Metalloborospherenes withaStabilizedClassical Fullerene-LikeBorosphereneB₃₆ asElectricManipulatedSecond-OrderNonlinearOptical

Weihong Chen,^a Jiayuan Liu,^b Weiming Sun,^c Huimin He,^d Shansheng Yu,^{*a}, Ying

Li*e, and Zhiru Li*e

^a Key Laboratory of Automobile Materials of MOE and Department of Materials Science, Jilin University, Changchun, 130012, China

- ^b Institute of Applied Chemistry, Hebei North University, Zhangjiakou, 075000, China
- ^c Department of Basic Chemistry, The School of Pharmacy, Fujian Medical University, Fuzhou, 350108, People's Republic of China

^d Institute of Computational and Applied Physics, Department of Physics, Taiyuan Normal University, Jinzhong, 030600, China

^e Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China

Corresponding Authors

E-mail: yuss@jlu.edu.cn (Shansheng Yu)

E-mail: liyingedu@jlu.edu.cn (Ying Li)

E-mail: lzr@jlu.edu.cn (Zhiru Li)

Table S1. The symmetry, B-B bond lengths shared between two five-membered rings (d_{5-5} , in Å), B-B bond lengths shared between a five and a six membered ring (d_{5-6} , d_{6-5} , in Å), B-B bond lengths between two six-membered rings (d_{6-6} , in Å), B-Mg bond lengths (d_1 , in Å), top and lumbar B-Li bond lengths (d_2 , d_3 , in Å), horizontal and vertical diameters (D_1 , D_2 in Å) for Mg₁₂Li₈&B₃₆.

Level	Symmetry	<i>d</i> ₅₋₅	<i>d</i> ₆₋₆	<i>d</i> ₆₋₅	<i>d</i> ₅₋₆	d_1	d_2	d_3	D_1	D_2
PBE0/6-311G(d)	D_{6h}	1.799	1.705	1.716	1.744	2.304	2.193	2.204	6.1	6.5
PBE0/6-311+G(d)	D_{6h}	1.799	1.705	1.716	1.744	2.304	2.193	2.204	6.1	6.5
TPSSH/6-311G(d)	D_{6h}	1.805	1.708	1.722	1.749	2.311	2.204	2.216	6.1	6.5
B3LYP/6-311G(d)	D_{6h}	1.798	1.710	1.719	1.747	2.318	2.193	2.206	6.1	6.4

Figure. S1 Optimized structures of Mg₁₂Li₈&B₃₆ (a), Mg₁₂Li₈&(Li₂@B₃₆) (b), Mg₁₂Li₈&(Be₂@B₃₆) (c) and the direction of external electric field (light blue arrow).

F	0	5	10	15	20	30	40	45	50	55	60	70
M06-2X	0.0	0.4	0.8	1.6	2.3	3.9	6.2	8.3	11.9	86.1	3.6	9.7
LC-PBEPBE	0.0	0.1	0.5	1.0	1.3	2.4	24.5	34.7	49.6	61.0	48.9	28.6

Table S2. β_0 (10⁴ au) values of Mg₁₂Li₈&B₃₆ calculated by different density functionals in conjunction with the 6-311+G(d) for Mg, and 6-31+G(d) for B as well as 6-31G(d) basis set for Li atoms.