Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information For

Tertiary amines as a C1 synthon: metal-free synthesis of quinolines

and 2-substituted quinolines via [3+2+1] aerobic cyclization and C-N

bond cleavage

Jing-Yuan Liu,^a Zhen-Ying Wang,^a Qiang Li,^{*a} Dacheng Li^a and Jianmin Dou^{*a}

^a Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China.

E-mail: liqiang9@lcu.edu.cn; jmdou@lcu.edu.cn.

Table of Contents page

1. General	S1
2. General procedure for the synthesis of 4	S1
3. Characterization data for compounds 4	S1-S12
4. References	S12
5. ¹ H , ¹⁹ F and ¹³ C NMR spectra of compounds 4S	13-S42

1. General

All other substrates and reagents were commercially available and used without further purification. The products were purified by flash column chromatography on silica gel (300-400 meshes). ¹H spectra were recorded in CDCl₃ on 500 MHz NMR spectrometers and resonances (δ) are given in parts per million relatives to tetramethylsilane. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet, etc.), coupling constants (Hz) and integration. ¹³C spectra were recorded in CDCl₃ on 125 MHz NMR spectrometers and resonances (δ) are given in ppm. ¹⁹F spectra were recorded in CDCl₃ on 470 MHz NMR spectrometers and resonances (δ) are given in ppm. ¹⁹F spectra were recorded in CDCl₃ on 470 MHz NMR spectrometers and resonances (δ) are given in ppm. High-resolution mass spectral (HRMS) were obtained on a Waters XEVO G2-XS QTOF mass spectrometer with ESI resource. All GC analyses were performed on Shimadzu GC 2014C. Compound 4-methoxy-2-(1-phenylvinyl)aniline **5a** and N-phenylmethanimine **6** were prepared according to the reported literature.^[1]

2. General procedure for the synthesis of 4 (4a as an example)

An oven dried Schlenk tube of 10 mL equipped with a magnetic stir bar was charged with phenylacetylene **1a** (0.5 mmol), 4-methoxyaniline **2a** (1.0 mmol, 2.0 equiv.), TMEDA **3a** (1.0 mmol, 2.0 equiv.) and I₂ (1.0 mmol), TsOH·H₂O (1.0 equiv.) in TFE (1.0 mL), The mixture was stirred at 130 °C for 12 hours under an atmosphere of O₂. After the reaction finished, the reaction mixtures were quenched with saturation Na₂S₂O₃ solution (20 mL), extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (Petroleum ether/EtOAc = 5:1) to afford the product **4a** as a yellow solid (82.2 mg, 70% yield).

3. Characterization data for compounds 4

6-Methoxy-4-phenylquinoline (4a)^[2]:

Obtained as a yellow solid (82.2 mg, 70% yield); ¹H-NMR (500 MHz, CDCl₃) δ

(ppm) 8.79 (d, J = 4.4 Hz, 1H), 8.07 (d, J = 9.2 Hz, 1H), 7.55-7.45 (m, 5H), 7.38 (dd, J = 9.2, 2.8 Hz, 1H), 7.27 (d, J = 4.4 Hz, 1H), 7.19 (d, J = 2.7 Hz, 1H), 3.78 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 157.8, 147.5, 147.1, 144.8, 138.3, 131.2, 129.3, 128.6, 128.3, 127.7, 121.7, 121.6, 103.7, 55.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₄NO: 236.1075, found: 236.1091.

6-Methyl-4-phenylquinoline (4b)^[2]:

Obtained as a colorless liquid (85.5 mg, 78% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.86 (d, J = 4.4 Hz, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.65 (s, 1H), 7.59-7.43 (m, 6H), 7.27 (d, J = 4.4 Hz, 1H), 2.46 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 149.0, 147.7, 147.3, 138.2, 136.5, 131.5, 129.54, 129.47, 128.5, 128.2, 126.7, 124.5, 121.4, 21.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₄N: 220.1126, found: 220.1146.

6-Ethyl-4-phenylquinoline (4c)^[3]:

Obtained as a brown liquid (62.9 mg, 54% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.86 (d, J = 4.4 Hz, 1H), 8.11 (d, J = 8.6 Hz, 1H), 7.68 (s, 1H), 7.58 (dd, J = 8.7, 2.0 Hz, 1H), 7.55-7.44 (m, 5H), 7.26 (d, J = 4.4 Hz, 1H), 2.74 (q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 149.0, 147.8, 147.4, 142.7, 138.2, 130.3, 129.6, 129.4, 128.4, 128.2, 126.6, 123.3, 121.3, 29.0, 15.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₆N: 234.1282, found: 234.1279.

6-(tert-Butyl)-4-phenylquinoline (4d)^[2]:

Obtained as a colorless liquid (78.3 mg, 60% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.88 (d, J = 4.4 Hz, 1H), 8.12 (d, J = 8.9 Hz, 1H), 7.88 (d, J = 2.2 Hz, 1H), 7.82 (dd, J = 8.9, 2.2 Hz, 1H), 7.63-7.41 (m, 5H), 7.29 (d, J = 4.4 Hz, 1H), 1.33 (s, 9H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 149.3, 149.25, 148.3, 147.2, 138.2, 129.5, 129.3, 128.5, 128.3, 128.1, 126.2, 121.3, 120.6, 35.0, 31.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₉H₂₀N: 262.1595, found: 262.1593.

6-(Methylthio)-4-phenylquinoline (4e)^[4]:

Obtained as a white solid (54.0 mg, 43% yield);¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.85 (d, J = 4.4 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.67 (d, J = 2.2 Hz, 1H), 7.61 (dd, J = 8.9, 2.1 Hz, 1H), 7.56-7.45 (m, 6H), 7.30 (d, J = 4.4 Hz, 1H), 2.45 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 149.1, 147.1, 146.9, 137.8, 137.5, 130.1, 129.4, 128.7, 128.6, 128.5, 127.1, 121.9, 121.0, 15.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₄NS: 252.0847, found: 252.0850.

4-Phenylquinoline (4f)^[4]:

Obtained as a yellow liquid (49.2 mg, 48% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.93 (d, J = 4.4 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.5 Hz, 1H), 7.79-7.63 (m, 1H), 7.59-7.40 (m, 6H), 7.31 (d, J = 4.4 Hz, 1H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 149.9, 148.6, 148.4, 137.9, 129.8, 129.4, 129.2, 128.5, 128.3, 126.7, 126.5, 125.8, 121.2. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₂N: 206.0969, found: 206.0969.

6-Fluoro-4-phenylquinoline (4g)^[4]:

Obtained as a white solid (100.4 mg, 90% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.88 (d, J = 4.4 Hz, 1H), 8.16 (dd, J = 9.2, 5.6 Hz, 1H), 7.61-7.39 (m, 7H), 7.30 (d, J = 4.4 Hz, 1H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 160.5 (d, J = 247.7 Hz), 149.1 (d, J = 2.5 Hz), 147.8 (d, J = 5.5 Hz), 145.7, 137.4, 132.2 (d, J = 9.2 Hz), 129.2, 128.6, 128.5, 127.4 (d, J = 9.6 Hz), 121.7, 119.4 (d, J = 25.8 Hz), 109.0 (d, J = 23.1 Hz). ¹⁹F NMR (470 MHz, CDCl₃) δ (ppm) -112.5. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₁FN: 224.0875, found: 224.0879.

6-Chloro-4-phenylquinoline (4h)^[4]:

Obtained as a white solid (102.8 mg, 86% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.92 (d, J = 4.4 Hz, 1H), 8.11 (d, J = 9.0 Hz, 1H), 7.88 (d, J = 2.4 Hz, 1H), 7.66 (dd, J = 9.0, 2.3 Hz, 1H), 7.62-7.41 (m, 5H), 7.35 (d, J = 4.4 Hz, 1H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 150.1, 147.8, 147.1, 137.3, 132.6, 131.5, 130.3, 129.4, 128.8, 128.7, 127.5, 124.7, 122.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₁ClN: 240.0580, found: 240.0586.

6-Bromo-4-phenylquinoline (4i)^[4]:

Obtained as a white solid (63.7 mg, 45% yield);¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.95 (d, J = 4.4 Hz, 1H), 8.06-8.03 (m, 2H), 7.80 (dd, J = 9.0, 2.2 Hz, 1H), 7.61-7.44 (m, 5H), 7.36 (d, J = 4.4 Hz, 1H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 150.30, 147.7, 147.3, 137.3, 132.8, 131.6, 129.4, 128.8, 128.7, 127.98, 127.96, 122.0, 120.9. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₁BrN: 284.0075, found: 284.0080.

4-Phenylquinoline-6-carbonitrile (4j)^[5]:

Obtained as a yellow solid (43.7 mg, 38% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 9.07 (d, J = 4.5 Hz, 1H), 8.33 (d, J = 1.8 Hz, 1H), 8.26 (d, J = 8.7 Hz, 1H), 7.87 (dd, J = 8.8, 1.9 Hz, 1H), 7.69-7.53 (m, 3H), 7.53-7.43 (m, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 152.7, 149.6, 149.1, 136.4, 132.6, 131.4, 129.9, 129.4, 129.2, 129.0, 126.3, 122.7, 118.7, 110.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₁N₂: 231.0922, found: 231.0931.

4-Phenyl-6-(trifluoromethyl) quinoline (4k)^[4]:

Obtained as a yellow liquid (46.4 mg, 34% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 9.05 (d, J = 4.4 Hz, 1H), 8.29 (d, J = 8.8 Hz, 1H), 8.25 (s, 1H), 7.90 (dd, J = 8.8, 2.1 Hz, 1H), 7.61-7.48 (m, 5H), 7.44 (d, J = 4.4 Hz, 1H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 152.0, 149.7, 149.5, 137.0, 131.2, 129.4, 129.0, 128.9, 128.5(q, J = 32.3 Hz), 125.9, 125.0 (q, J = 2.9 Hz), 124.02(q, J = 270.8 Hz), 123.95 (q, J = 4.6 Hz), 122.4. ¹⁹F NMR (470 MHz, CDCl₃) δ (ppm) -62.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₁F₃N: 274.0843, found: 274.0845.

6-Nitro-4-phenylquinoline (41)^[6]:

Obtained as a yellow solid (32.5 mg, 26% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 9.11 (d, J = 4.4 Hz, 1H), 8.89 (d, J = 2.5 Hz, 1H), 8.49 (dd, J = 9.2, 2.5 Hz, 1H),

8.30 (d, J = 9.3 Hz, 1H), 7.65-7.57 (m, 3H), 7.54-7.50 (m, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 153.2, 150.8, 150.7, 145.8, 136.4, 131.8, 129.5, 129.4, 129.1, 125.9, 123.1, 122.9, 122.8. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₅H₁₁N₂O₂: 251.0820, found: 251.0821.

4-(4-Ethylphenyl)-6-methoxyquinoline (4m):

Obtained as a yellow solid (84.2 mg, 64% yield), m.p.: 51-52 °C; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.76 (d, J = 4.4 Hz, 1H), 8.06 (d, J = 9.2 Hz, 1H), 7.45-7.39 (m, 2H), 7.38-7.31 (m, 3H), 7.26-7.21 (m, 2H), 3.76 (s, 3H), 2.74 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.6 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 157.6, 147.4, 147.0, 144.7, 144.3, 135.5, 131.1, 129.1, 128.0, 127.6, 121.50, 121.48, 103.7, 55.2, 28.5, 15.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₈NO: 264.1388, found: 264.1384.

4-(4-(*tert*-Butyl)phenyl)-6-methoxyquinoline (4n)^[7]:

Obtained as a yellow liquid (101.9 mg, 70% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.78 (d, J = 4.5 Hz, 1H), 8.07 (d, J = 9.2 Hz, 1H), 7.61-7.52 (m, 2H), 7.50-7.44 (m, 2H), 7.38 (dd, J = 9.2, 2.9 Hz, 1H), 7.28 (m, 2H), 3.81 (s, 3H), 1.41 (s, 9H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 157.8, 151.4, 147.6, 147.0, 144.8, 135.3, 131.3, 129.0, 127.7, 125.6, 121.7, 121.5, 104.3, 55.5, 34.7, 31.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₀H₂₂NO: 292.1701, found: 292.1705.

4-([1,1'-biphenyl]-4-yl)-6-Methoxyquinoline (40):

Obtained as a white solid (101.1 mg, 65% yield), m.p.: 163-164 °C; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.80 (d, J = 4.4 Hz, 1H), 8.09 (d, J = 9.2 Hz, 1H), 7.76 (d, J = 7.8 Hz, 2H), 7.69 (d, J = 7.6 Hz, 2H), 7.59 (d, J = 7.9 Hz, 2H), 7.48 (t, J = 7.6 Hz, 2H), 7.42-7.36 (m, 2H), 7.31 (d, J = 4.4 Hz, 1H), 7.27 (d, J = 2.8 Hz, 1H), 3.79 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 157.9, 147.5, 146.6, 144.9, 141.1, 140.3, 137.2, 131.3, 129.7, 128.9, 127.62, 127.60, 127.3, 127.0, 121.7, 121.6, 103.7, 55.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₁₈NO: 312.1388, found: 312.1395.

6-Methoxy-4-(4-methoxyphenyl) quinoline (4p)^[8]:

Obtained as a yellow liquid (37.1 mg, 28% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.77 (d, J = 4.4 Hz, 1H), 8.06 (d, J = 9.1 Hz, 1H), 7.51-7.41 (m, 2H), 7.37 (dd, J = 9.2, 2.8 Hz, 1H), 7.30-7.21 (m, 2H), 7.14-6.99 (m, 2H), 3.90 (s, 3H), 3.80 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 159.7, 157.8, 147.5, 146.8, 144.8, 131.2, 130.6, 130.5, 127.8, 121.64, 121.58, 114.1, 103.7, 55.4, 55.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₆NO₂: 266.1181, found: 266.1194.

4-(4-Fluorophenyl)-6-methoxyquinoline (4q)^[7]:

Obtained as a white solid (97.4 mg, 77% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.78 (d, J = 4.4 Hz, 1H), 8.07 (d, J = 9.1 Hz, 1H), 7.47 (dd, J = 8.5, 5.5 Hz, 2H), 7.38 (dd, J = 9.3, 2.8 Hz, 1H), 7.26-7.17 (m, 3H), 7.11 (d, J = 2.9 Hz, 1H), 3.78 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 163.7, 161.8, 157.9, 147.5, 145.9, 144.8, 134.3 (d, J = 3.6Hz), 131.4, 131.0 (d, J = 8.2 Hz), 127.6, 121.7 (d, J = 11.7 Hz), 115.7 (d, J = 21.6 Hz), 103.4, 55.4. ¹⁹F NMR (470 MHz, CDCl₃) δ (ppm) -113.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₃FNO: 254.0981, found: 254.0989.

Obtained as a white solid (103.6 mg, 77% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.76 (d, J = 4.4 Hz, 1H), 8.06 (d, J = 9.1 Hz, 1H), 7.48 (dd, J = 8.4, 1.6 Hz, 2H), 7.45-7.39 (m, 2H), 7.36 (dd, J = 9.2, 2.8 Hz, 1H), 7.20 (d, J = 4.4 Hz, 1H), 7.09 (d, J = 2.8 Hz, 1H), 3.76 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 157.9, 147.3, 145.5, 144.7, 136.6, 134.3, 131.2, 130.4, 128.8, 127.2, 121.7, 121.4, 103.1, 55.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₃CINO: 270.0685, found: 270.0689.

4-(4-Bromophenyl)-6-methoxyquinoline (4s)^[7]:

Obtained as a white solid (115.8 mg, 74% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.66 (d, J = 4.4 Hz, 1H), 7.95 (d, J = 9.2 Hz, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.32-7.19 (m, 3H), 7.10 (d, J = 4.3 Hz, 1H), 6.98 (d, J = 2.8 Hz, 1H), 3.66 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 157.9, 147.3, 145.5, 144.7, 137.1, 131.8, 131.3, 130.8, 127.2, 122.6, 121.8, 121.4, 103.1, 55.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₃BrNO: 314.0180, found: 314.0180.

Methyl 4-(6-methoxyquinolin-4-yl)benzoate (4t):

Obtained as a yellow solid (89.4 mg, 61% yield), m.p.: 104-105 °C; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.82 (d, J = 4.5 Hz, 1H), 8.21 (d, J = 7.9 Hz, 2H), 8.09 (d, J = 9.2

Hz, 1H), 7.61 (d, J = 7.9 Hz, 2H), 7.40 (dd, J = 9.2, 2.4 Hz, 1H), 7.29 (d, J = 4.3 Hz, 1H), 7.09 (d, J = 2.8 Hz, 1H), 3.99 (s, 3H), 3.78 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 166.7, 158.1, 147.5, 145.8, 144.8, 143.0, 131.4, 130.1, 129.9, 129.4, 127.2, 122.0, 121.5, 103.2, 55.4, 52.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₆NO₃: 294.1130, found: 294.1137.

6-Methoxy-4-(4-(trifluoromethyl)phenyl) quinoline (4u)^[7]:

Obtained as a white solid (95.5 mg, 63% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.82 (d, J = 4.3 Hz, 1H), 8.10 (d, J = 9.2 Hz, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.64 (d, J =7.9 Hz, 2H), 7.41 (dd, J = 9.2, 2.8 Hz, 1H), 7.27 (d, J = 4.3 Hz, 1H), 7.07 (d, J = 2.7 Hz, 1H), 3.80 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 158.2, 147.4, 145.4, 144.8, 142.1 (d, J = 1.7 Hz), 131.5, 130.6 (d, J = 32.7 Hz), 129.7, 127.2, 125.7 (q, J = 3.9 Hz), 124.0 (d, J = 272.2 Hz), 122.0, 121.6, 103.2, 55.5. ¹⁹F NMR (470 MHz, CDCl₃) δ (ppm) -62.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₃F₃NO: 304.0949, found: 304.0958.

6-Methoxy-4-(3-methoxyphenyl) quinoline (4v):

Obtained as a yellow liquid (95.5 mg, 75% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.78 (d, J = 4.4 Hz, 1H), 8.07 (d, J = 9.2 Hz, 1H), 7.43 (t, J = 7.9 Hz, 1H), 7.37 (dd, J = 9.2, 2.8 Hz, 1H), 7.27 (d, J = 4.3 Hz, 1H), 7.22 (d, J = 2.8 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 7.07-7.04 (m, 1H), 7.04-7.00 (m, 1H), 3.85 (s, 3H), 3.78 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 159.7, 157.8, 147.4, 146.8, 144.8, 139.6, 131.2, 129.6, 127.5, 121.7, 121.6, 121.5, 114.8, 113.8, 103.6, 55.34, 55.26. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₆NO₂: 266.1181, found: 266.1184.

4-(3-Bromophenyl)-6-methoxyquinoline (4w)^[7]:

Obtained as a yellow liquid (112.7 mg, 72% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.79 (d, J = 4.4 Hz, 1H), 8.07 (d, J = 9.2 Hz, 1H), 7.67 (t, J = 1.8 Hz, 1H), 7.66-7.58 (m, 1H), 7.44 (m, 1H), 7.42-7.36 (m, 2H), 7.25 (d, J = 4.4 Hz, 1H), 7.11 (d, J = 2.8 Hz, 1H), 3.80 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 158.0, 147.4, 145.3, 144.8, 140.3, 132.2, 131.4, 131.4, 130.1, 127.9, 127.3, 122.8, 121.9, 121.5, 103.2, 55.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₃BrNO: 314.0180, found: 314.0179.

4-(2-Chlorophenyl)-6-methoxyquinoline (4x):

Obtained as a yellow liquid (94.2 mg, 70% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.71 (d, J = 4.4 Hz, 1H), 7.98 (d, J = 9.2 Hz, 1H), 7.45 (dd, J = 7.8, 1.5 Hz, 1H), 7.34-7.25 (m, 3H), 7.22 (dd, J = 7.3, 2.0 Hz, 1H), 7.14 (d, J = 4.4 Hz, 1H), 6.64 (d, J = 2.8 Hz, 1H), 3.62 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 157.8, 147.2, 144.4, 144.3, 136.8, 133.1, 131.2, 131.1, 129.8, 129.7, 127.7, 126.8, 122.0, 121.8, 103.5, 55.3. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₃ClNO: 270.0685, found: 270.0683.

6-Methoxy-3,4-diphenylquinoline (4y)^[9]:

Obtained as a yellow solid (24.9 mg, 16% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.85 (s, 1H), 8.09 (d, J = 9.1 Hz, 1H), 7.45-7.30 (m, 4H), 7.29-7.10 (m, 7H), 6.95 (d, J = 2.8 Hz, 1H), 3.73 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 158.0, 149.4, 144.2, 143.7, 138.3, 136.6, 133.4, 131.0, 130.4, 130.1, 128.24, 128.22, 128.0, 127.7, 127.0, 121.4, 104.6, 55.4. HRMS (ESI) m/z: [M+H]⁺ calcd for C₂₂H₁₈NO: 312.1388, found: 312.1390.

6-Methoxy-3-methyl-4-phenylquinoline (4z):

Obtained as a white solid (67.3 mg, 54% yield), m.p.: 78-79 °C; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.70 (s, 1H), 8.01 (d, J = 9.1 Hz, 1H), 7.57-7.49 (m, 2H), 7.49-7.43 (m, 1H), 7.32-7.22 (m, 3H), 6.69 (d, J = 2.8 Hz, 1H), 3.67 (s, 3H), 2.22 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 157.7, 150.2, 145.0, 143.0, 137.1, 130.8, 129.1, 128.6, 128.5, 128.2, 127.8, 120.3, 104.0, 55.2, 17.6. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₇H₁₆NO: 250.1232, found: 250.1235.

2-Ethyl-6-methoxy-4-phenylquinoline (4zb)^[10]:

Obtained as a yellow solid (32.9 mg, 25% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.01 (d, J = 9.1 Hz, 1H), 7.55-7.50 (m, 4H), 7.50-7.46 (m, 1H), 7.35 (dd, J = 9.2, 2.9 Hz, 1H), 7.21 (s, 1H), 7.16 (d, J = 2.8 Hz, 1H), 3.77 (s, 3H), 3.00 (q, J = 7.6 Hz, 2H), 1.41 (t, J = 7.6 Hz, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 161.0, 157.3, 147.4, 144.4, 138.7, 130.6, 129.3, 128.6, 128.2, 126.0, 121.34, 121.27, 103.9, 55.4, 32.0, 14.1. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₈H₁₈NO: 264.1388, found: 264.1398.

6-Methoxy-2,4-diphenylquinoline (4zc)^[11]:

Obtained as a white solid (96.5 mg, 62% yield); ¹H-NMR (500 MHz, CDCl₃) δ (ppm) 8.20-8.08 (m, 3H), 7.77 (s, 1H), 7.60-7.52 (m, 4H), 7.53-7.47 (m, 3H), 7.46-7.41 (m, 1H), 7.39 (dd, J = 9.2, 2.8 Hz, 1H), 7.19 (d, J = 2.8 Hz, 1H), 3.79 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ (ppm) 157.8, 154.6, 147.8, 144.9, 139.7, 138.7, 131.6, 129.3, 129.0, 128.8, 128.7, 128.3, 127.3, 126.6, 121.8, 119.7, 103.7, 55.5. HRMS (ESI) m/z: [M+H]⁺ calcd for

C₂₂H₁₈NO: 312.1388, found: 312.1396.

4. References

- [1] (a) Tolstikov, A. G.; Savchenko, R. G.; Lukina, E. S.; Afon'kina, S. R.; Nedopekin,
- D. V.; Khalilov, L. M.; Odinokov, V. N. Russ. Chem. Bull., Int. Ed. 2013, 62, 2377-2384;
- (b) Ding, C.; Li, S.; Feng, K.; Ma, C. Green. Chem., 2021, 23, 5542.
- [2] Xiang, Y.; Luo, P.; Hao, T.; Xiong, W.; Song, X.; Ding, Q. *Tetrahedron*, 2021, 79, 131832.
- [3] Mondal, R. R.; Khamarui, S.; Maiti, D. K. ACS Omega, 2016, 1, 251.
- [4] Xu, X.; Yang, Y.; Zhang, X.; Yi, W. Org. Lett., 2018, 20, 566.
- [5] Chandra, D.; Dhiman, A. K.; Kumar, R.; Sharma, U. *Eur. J. Org. Chem.*, 2019, 2019, 2753.
- [6] Qin, F.; Zhang, W. Preparation of quinoline derivative. CN109796403A, 2019.
- [7] Cen, J.; Li, J.; Zhang, Y.; Zhu, Z.; Yang, S.; Jiang, H. Org. Lett., 2018, 20, 4434.
- [8] Roy, B.; Ansary, I.; Samanta, S.; Majumdar, K. C. Tetrahedron Lett., 2012, 53, 5119.
- [9] Midya, S. P.; Sahoo, M. K.; Landge, V. G.; Rajamohanan, P. R.; Balaraman, E. *Nature Comm.*, **2015**, *6*, 8591.
- [10] Xu, H.; Yu, F.; Huang, R.; Weng, M.; Chen, H.; Zhang, Z. Org. Chem. Front., 2020, 7, 3368.
- [11] Talvitie, J.; Alanko, I.; Bulatov, E.; Koivula, J.; Pöllänen, T.; Helaja, J. Org. Lett.,2022, 24, 274.

5. ¹H, ¹⁹F and ¹³C NMR spectra of compounds 4

100 90 fl (ppm) 130 120 110

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

500 MHz, ¹H-NMR

125 MHz, ¹³C-NMR

Δf

150

190 180 170 160

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S19

TAN ANALA SEPERATION ANALASIAN

500 MHz, ¹H-NMR

(12, 23) (13, 23) (14, 34) (14, 34) (14, 34) (13

₹77,254 77,000 76,746 ---0.000

S27

-3.794

- 0.000

90 80 fl (ppm)

8,001 8,001 7,466 7,466 7,466 7,466 7,466 7,468 7,468 7,468 7,468 7,468 7,468 7,468 7,468 7,468 7,468 7,468 7,468 7,468 7,468 7,769 7,769

100 90 fl (ppm)

<8.780 7,469 7,457 7,389 7,389 7,389 7,389 7,389 7,389 7,289 7,289 7,225 7,221 7,222 7,221 7,222 7,221 7,221 7,222 7,221 7,222 7,221 7,222 7,221 7,2221 7,2217

S30

-101.01 -112.01 -112.01 -112.01 -112.01 -113.02 -11

---0.000

-107.840 -145.840 -145.840 -145.840 -145.840 -145.840 -101.033 -101.033 -101.033 -101.033 -101.033 -101.033

S33

4. 798 8. 798 8. 789

S37

fl (ppm)

-10

-3, 730

---0.000

4y 500 MHz, ¹H-NMR

90 80 fl (ppm) ò

90 80 fl (ppm) ò

