Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

One-pot synthesis of ferrocenyl dithiocarbamates and its application for the detection of Cu²⁺

Junyang Dong^{a,b}, Jianfeng Hu^{a,c}, Hao Zhang^{a,c*}

^aSchool of Chemical & Chemical Engineering, Inner Mongolia University, Hohhot

010021, P. R. China.

^bState Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics,

Chinese Academy of Sciences, Lanzhou 730000, P. R.China

^cInner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, P. R. China.

*Corresponding Author, tel: +86-471-4994406, fax: +86-471-4994406, e-mail: haozhang@imu.edu.cn; zh hjf@hotmail.com.

Contents

1. General information	2
2. ¹ H, ¹³ C NMR spectra for all compounds	3
3. Figure S1	17
4. Figure S2	17
5. Figure S3	18
6. Figure S4	

1. General information.

All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the references. N-tosylhydrazone and ammonium dithiocarbamate were prepared according to the literature method. Solvent dioxane was distilled over sodium. All Solvents were purified according to standard references procedures. For chromatography, 200-300 mesh silica gel (Qingdao, China) was employed. ¹H and ¹³C NMR spectra were recorded at 500 MHz and 125 MHz FT-NMR spectrometer. Chemical shifts are reported in ppm using tetramethylsilane as internal standard when CDCl₃ was used as solvent. The HRMS analysis was obtained on a QTOF mass spectrometer. Melting points were determined with melting points apparatus and are uncorrected. The data of **3a** and **3e** were collected on a Bruker APEX II CCD Mo-K α radiation ($\lambda = 0.71073$ Å) and measured at room temperature.

2.1H, 13C NMR spectra for all compounds

¹H NMR spectra and ¹³C NMR spectra for **3a**.

¹H NMR spectra and ¹³C NMR spectra for **3b**.

¹H NMR spectra and ¹³C NMR spectra for 3c.

 $^1\mathrm{H}$ NMR spectra and $^{13}\mathrm{C}$ NMR spectra for **3d**.

¹H NMR spectra and ¹³C NMR spectra for **3e**.

 $^1\mathrm{H}$ NMR spectra and $^{13}\mathrm{C}$ NMR spectra for **3f**.

 $^1\mathrm{H}$ NMR spectra and $^{13}\mathrm{C}$ NMR spectra for **3g**.

 $^1\mathrm{H}$ NMR spectra and $^{13}\mathrm{C}$ NMR spectra for **3h**.

 $^1\mathrm{H}$ NMR spectra and $^{13}\mathrm{C}$ NMR spectra for **3i**.

 $^1\mathrm{H}$ NMR spectra and $^{13}\mathrm{C}$ NMR spectra for **5a**.

 $^1\mathrm{H}$ NMR spectra and $^{13}\mathrm{C}$ NMR spectra for **5b**.

¹H NMR spectra and ¹³C NMR spectra for **5c**.

kan bina dan bahar bahar kan di kina kan dan di kan dan bahar bahar bahar bahar bahar bahar bahar bahar bahar b

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

200 190 180 170 160 150

 $^1\mathrm{H}$ NMR spectra and $^{13}\mathrm{C}$ NMR spectra for 5d.

¹H NMR spectra and ¹³C NMR spectra for **5e**.

Figure S1. Visual color changes of probe 3e upon addition of various metal ions (5 equiv) in CH₃CN/H₂O (7:3, v/v, 10 μ M).

Figure S2. Benesi - Hildebrand plot obtained from the UV- vis absorption (absorption calculated from 423 nm) **3e**-Cu²⁺.

Figure S3. Benesi - Hildebrand plot obtained from the UV- vis absorption (absorption calculated from 423 nm) **3e**-Cu²⁺.

Figure S4. The Job's plot of receptor 3e-Cu²⁺.