Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

1	Engineering surface Mn-enriched and regulating active oxygen
2	species over LaMnO ₃ catalysts by synergistic modification of acid
3	etching and potassium supported for soot removal
4	Wenyue Dai ^a , Congcong Li ^a , Fang Wang ^b , Changsen Zhang ^{a*} , Panpan Liu ^a ,
5	Haonan Qiao ^b , Zihan Li ^b
6	^a School of Ecology & Environment, Zhengzhou University, Zhengzhou 450001,
7	Henan, China
8 9 10	^b College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, China
11	*Corresponding author: Changsen Zhang
12	School of Ecology & Environment,
13	Zhengzhou University
14	Zhengzhou 450001, China
15	Email: <u>zhangcs@zzu.edu.cn</u>
16	Tel: +86 371 67781163
17	Fax: +86 371 67781163
18	
19	
20	
21	
22	
23	
24	
25	
26	

28

Fig. S1 (a) XRD patterns of LM, LM-1h, LM-2h, and LM-3h; (b) XRD patterns of LM, LM-2h,

30 xK/LM-2h, and 15K/LM; (c) XRD patterns of characteristic peak amplification

32 Fig. S2 Nitrogen adsorption and desorption curves of LM, LM-2h, 15K/LM-2h, and 15K/LM

33

Fig. S3 CO₂ concentration and total soot conversion of the as-prepared catalysts during TPO under (a, b) loose contact condition without NO and (c, d) loose contact condition with NO

37 38

34

Fig. S4 Stability tests of 15K/LM

39 In order to investigate the stability of catalysts, the 15K/LM was further examined by

40 reusing the catalyst in soot combustion 4 times under the presence of NO conditions.

41 As shown in Fig. S4, after cycles of 15K/LM, there is a fluctuation range with an

42 acceptable increase in the T_{90} in the catalyst's four cycles and the CO_2 selectivity 43 remained over 90%, which indicated the 15K/LM catalyst has good stability.

45

Fig. S5 FT-IR spectra of 15K/LM-2h and 15K/LM catalysts and the reused catalyst.

In order to investigate whether NO³⁻ remains in 15K/LM and 15K/LM-2h samples 46 after the cyclic TPO test, FT-IR tests were carried out on the catalysts, and the 47 48 obtained curves were shown in Fig S5. For the 15K/LM-2h and 15K/LM samples, the two strong peaks at around 1384 cm⁻¹ and 825 cm⁻¹ could be observed, which are 49 associated with the typical antisymmetric stretching mode of free NO³⁻ ions and the 50 51 angular antisymmetric deformation of O-N-O respectively. Meanwhile, the peak of NO³⁻ could still be observed after the TPO cycles. It is reported that in the presence of 52 gas-phase O_2 , the consumption and the regeneration of the active surface NO^{3-} groups 53 can reach an equilibrium state quickly ^{1, 2}. 54

- 55
- 56
- 57
- 58

59

60

61

 $T_{10}(^{\circ}C)$ T₅₀ (°C) T₉₀ (°C) Catalysts S_{CO_2} (%) blank LM^a LM-1h^a LM-2h^a LM-3h^a 10K/LM-2h a 15K/LM-2h a 20K/LM-2h ^a 15K/LM ^a LM^b LM-1h^b LM-2h^b LM-3h^b 10K/LM-2h^b 15K/LM-2h b 20K/LM-2h b 15K/LM ^b

63 Table S1. Catalytic performance of catalysts for soot combustion under loose contact with or

64	without NC
64	without NC

65 ^a Reaction atmosphere: 5% O₂, 10% H₂O, 50 mL/min

66 ^b Reaction atmosphere: 5% O₂, 500 ppm NO, 10% H₂O, 50 mL/min

67	Table S2. The te	emperature for soot	combustion w	ith catalysts und	der tight contact	conditions.

Catalysts	T ₁₀ (°C)	T ₅₀ (°C)	T ₉₀ (°C)	S _{CO2} (%)
LM	330	381	420	97
LM-2h	296	353	394	98
15K/LM-2h	276	308	327	95
15K/LM	290	329	360	95

68 Reaction atmosphere: 5% O₂, 10% H₂O, 50 mL/min

78 **Reference**

- X. Feng, S. Zhang, R. Liu, J. Ma, X. Xu, J. Xu, X. Fang and X. Wang, *Phys Chem Chem Phys*, 2022, 24, 3250-3258.
- N. Feng, J. Meng, Y. Wu, C. Chen, L. Wang, L. Gao, H. Wan and G. Guan,
 Catalysis Science & Technology, 2016, 6, 2930-2941.