Electronic Supplementary Material (ESM)

An ordered one-step colorimetric sensor for selective determination of catechol based on the polyacrylic acid-coated cerium oxide with laccase-like activity

Xiaoyan Jiang,[‡] Min Wang,[‡] Li Hou* and Tianran Lin*

School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China. Email: houli@mailbox.gxnu.edu.cn; tianranlin@163.com

Fig. S1 The Particle size histogram of PAA-CeO₂.

Fig. S2 The UV-Vis absorption spectra of PAA-CeO₂ and CeO₂.

Fig. S3 The high-resolution XPS spectra of PAA-CeO₂, (A) Ce 3d, (B) O 1s, (C) C 1S.

Fig. S4 The verification of the laccase activity of PAA-CeO₂.

Fig. S5 The color reaction of the chromogenic substrate TMB

Fig. S6 The effect of different experimental parameters on the OD intensity of catechol detection: (A) the concentration of 4-AAP, (B) the incubation time of system, (C) the pH of buffer solution, (D) the volume of PAA-CeO₂ solution, (E) incubation temperature (the concentration of catechol was 50 μ mol L⁻¹ in all optimization experiments, error bar=SD, n=3)

Fig. S7 The UV–Vis absorption spectra and photographic images (inset) of the target substance and other interfering ions added.

Determination Method	Materials	Linear range (µmol L ⁻¹)	LOD (µmol L ⁻¹)	Reference
Fluorescence sensor	Si nanoparticles	0.06-40	0.02	1
Fluorescence sensor	Fe-MIL-88NH ₂	0.13-5	0.091	2
Electrochemical sensor	MoS ₂ nanoflower	10-6-1000	10-6	3
Electrochemical sensor	Ti ₃ C ₂ /MOF	0.5-150	0.0031	4
Amperometric sensor	iridium (IV) oxide	0.05-10.65	0.017	5
	graphitic carbon nitride-			
Colorimetric detection	copper hybrid	0-100	0.36	6
	nanoflowers			
Colorimetric sensor	TMB- MnO ₂	0.5-10	0.22	7
Colorimetric sensor	N,S-Co ₃ O ₄	2-15	0.31	8
Colorimetric sensor	PAA-CeO ₂	0.5-50	0.121	This work

Table S1 Comparison with the previous methods for catechol detection

Table S2 Recovery results of catechol in tap water by visual sensing

platform (n=3)

sample	Added (µmol L ⁻¹)	Found \pm SD (µmol L ⁻¹)	Recovery (%)	
tap water	5 50	$\begin{array}{c} 4.77 \pm 0.001 \\ 50.76 \pm 0.002 \end{array}$	95.40 101.52	

References

- 1 S. Nsanzamahoro, F. P. Mutuyimana, Y. Han, S. Ma, M. Na, J. Liu, Y. Ma, C. Ren, H. Chen and X. Chen, *Sens. Actuators, B*, 2019, **281**, 849-856.
- L. Hou, Y. Qin, T. Lin, Y. Sun, F. Ye and S. Zhao, *Sens. Actuators, B*, 2020, **321**.
- 3 J. S. A. Nair, S. S and K. Y. Sandhya, *Analyst*, 2022, **147**, 2966-2979.
- 4 R. Huang, D. Liao, S. Chen, J. Yu and X. Jiang, *Sens. Actuators, B*, 2020, **320**.
- 5 C. Erkmen, S. Kurbanoglu and B. Uslu, *Sens. Actuators, B*, 2020, **316**.
- 6 T. V. Dang, N. S. Heo, H. J. Cho, S. M. Lee, M. Y. Song, H. J. Kim and M. I. Kim, *Mikrochim Acta*, 2021, **188**, 293.
- 7 P. Xiao, Y. Liu, W. Zong, J. Wang, M. Wu, J. Zhan, X. Yi, L. Liu and H. Zhou, *RSC Adv*, 2020, **10**, 6801-6806.
- 8 X. Liu, X. Cao, S. Zhao, Z. Liu, G. Lu and Q. Liu, *Anal Methods*, 2021, **13**, 5377-5382.