Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary data

Incorporation of a Z-scheme AgI/Ag₆Si₂O₇ heterojunction to PET

fabric for efficient and repeatable photocatalytic dye degradation

Lili Wang¹, Lei Chen¹, Mengyao Tang¹, Shoujie Jiang^{1, 2}, Dawei Gao¹*

1 College of Textiles and Clothes, Yancheng Institute of Technology, Yancheng,

224051, China

2 School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an

710048, China

Corresponding author:

gaodawei@ycit.edu.cn (D. Gao)

Figure S1 Xe spectrum produced by Xenon lamp and transmittance of the cut-off film (Inserted).

Figure S2 SEM image of PET.

Figure S3 Valence band XPS spectra of $Ag_6Si_2O_7/PET$ (a) and AgI/PET (b), Mott-Schottky plots of AgI/PET (c).

Figure S3 showed that the VB of $Ag_6Si_2O_7$ was 2.72 V vs NHE and its CB can be calculated to be 1.44 V vs NHE (Figure S3a). The band gap structure of AgI was first

determined through XPS spectra of valence band (Figure S3b) and Mott-Schottky plots (Figure S3c). Positive slopes for Mott-Schotty plots indicated that AgI verified n-type semiconductor characteristics. Through the extrapolation of the x intercept in the Mott-Schotty curves, the flat-band potential of AgI could be evaluated to be -0.38 V (vs NHE). The valence XPS spectra could be used to check the energy gap from Fermi level (E_f) to the valence band top of semiconductors. The valence band top positions of AgI was 2.32 eV below the E_f . And the E_f was close to flatband potential for n-type semiconductor. Combined with the Eg value, the VB and CB of AgI was 1.94 eV and -0.76 eV, respectively."

Figure S4 Photodegradation of MO, RhB and PhOH of AgI/Ag₆Si₂O₇/PET(5) under visible-light irradiation.

Figure S5 The PL spectra (a), transient photocurrent response (b) and EIS plots (c) of the as-prepared samples.

Figure S6 Nitrogen adsorption-desorption isotherm of $Ag_6Si_2O_7/PET$, AgI/PET and

AgI/Ag₆Si₂O₇/PET(5).

Table S1 BET surface ares and pore size of $Ag_6Si_2O_7/PET$, AgI/PET and

AgI/Ag₆Si₂O₇/PET(5)

Samples	$S_{BET} \left(m^2/g \right)$	Pore Volume (cm ³ /g)	Pore size (nm)
Ag ₆ Si ₂ O ₇ /PET	1.754	0.004	3.432
AgI/PET	28.347	0.115	1.466
AgI/Ag ₆ Si ₂ O ₇ /PET(5)	5.746	0.022	1.849

Figure S7 SEM image (a) and XRD patterns (b) of AgI/Ag₆Si₂O₇/PET(5) after 5 cycles' photocatalysis.

Figure S8 The ESR signals of \cdot OH (a) and \cdot O₂⁻ (b) of AgI/Ag₆Si₂O₇/PET and AgI/PET.