Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information for:

FeCl₂/TBAC efficiently catalyze the domino coupling reaction for constructing the indoline-fused tetrahydroisoquinolines

Zhonghua Sun,^a Jie Yao,^a Shuliang Ji,^b Weiyou Zhou,^{a,c*} Anwei Wang,^a Mingyang He^a Xianjun Hua^a and Yupeng Liu^c*

^a Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China.

^b Jiangsu Yabang Dyestuff Co., LTD, Changzhou 213163, China

^c Jiangsu Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210037, China

Table of Contents

Table of Contents	S2
Experimental	S3
Optimization of the reaction conditions	S6
Effect of the amount of TBAC on the reaction	S7
The reaction results for some substrates with or without of TBAC	S8
The catalytic results between 1i and 2a with or without TBAC	S9
ESI-MS spectra of imine intermediate	S10
Spectrometric data for the products:	S11
References	S16
NMR spectra	S17

Experimental

Chemicals and reagents

All the reagents and solvents in the study were analytically pure and were all purchased from Energy or Aladdin and used as received. *N*-phenyl-1,2,3,4-tetrahydroisoquinoline and its derivatives were prepared from corresponding tetrahydroisoquinolines and aryl halides according to the reported method.^[1] 1-Deutero-2-phenyl-1,2,3,4tetrahydroisoquinoline (1a- d_1) was synthesized according to reported method,^[2] and the purity of 1a- d_1 was 92% according to ¹HNMR analysis. 2-(phenyl-d₅)-1,2,3,4-tetrahydroisoquinoline (1a-d₅) was synthesized according to the reported method using 1-bromobenzene-2,3,4,5,6-d₅ as the substrate, and the purity of **1a**-d₅ was 99% according to GC-MS analysis. And other substrates (98%~99% purity) were also purchased from Energy or Aladdin and used as received.

Catalytic cascade coupling/cyclization reaction between N-phenyl-1,2,3,4-tetrahydroisoquinoline and malononitrile

Typically, a mixture of *N*-phenyl-1,2,3,4-tetrahydroquinoline (0.50 mmol), malononitrile (1.5 mmol), FeCl₂ (31.7 mg, 0.25 mmol), toluene (2 mL) and TBAC (tetrabutylammonium chloride) (6.9 mg, 0.025 mmol) in a carousel reaction tube (Figure S1) was magnetically stirred at 80 °C under an 1 atm of oxygen atmosphere. The reaction was monitored by TLC (thin-layer chromatography, petroleum ether/ethyl acetate (10:1, v/v)) and analyzed through a GC-MS (SHIMADZU, GCMS-QP2010

SE). After completion of the reaction, the reaction mixture was cooled. The conversion of the substrate and the selectivity of quinoline were obtained on the basis of the GC-MS analysis.

Fig. S1. The photographs of the reactor and the reaction.

Catalytic cascade coupling/cyclization reaction between N-phenyl-1,2,3,4-tetrahydroisoquinoline derivatives and other nucleophiles

A mixture of *N*-phenyl-1,2,3,4-tetrahydroisoquinoline derivative (0.50 mmol), nucleophile (1.5 mmol), FeCl₂ (31.7 mg, 0.25 mmol), toluene (2 mL) and TBAC (tetrabutylammonium chloride) (6.9mg, 0.025 mmol) in a carousel reaction tube was stirred at 80 °C under 1 am of oxygen. After the finish of the reaction monitored by TLC (thin-layer chromatography, petroleum ether/ethyl acetate 10:1 (v/v)), the mixture was cooled and purified using flash chromatography to give the corresponding product. NMR spectra were recorded on a Bruker ADVANCE NMR spectrometer. The melting point was analyzed on a OptiMelt Automated Melting Point System. Silica gel 60 F254 thin-layer chromatography plates (Sinopharm) was used for the thin-layer chromatography using petroleum ether/ethyl acetate (10:1, v/v) as the mobile phase.

Electron paramagnetic resonance (EPR) experiments

X-band continuous-wave EPR spectra were obtained using a Bruker EMX Plus 6/1 spectrometer equipped with a dual-mode cavity (ER 4116DM). The solution of *N*-phenyl-1,2,3,4-tetrahydroisoquinoline derivative (0.50 mmol), malononitrile (1.5 mmol), FeCl₂ (31.7 mg, 0.25 mmol) and TBAC (6.9mg, 0.025 mmol) in toluene (2 mL) was stirred for 1 h at 80 °C and 100 μ L of the solution was sampled in EPR tube, which were cooled 5 K prior to measurements. EPR analysis was carried out at low temperature on EPR spectrometer operated at 9.802 GHz. Typical spectrometer parameters are shown as follows, sweep width: 4000 G; center field: 3000 G; time constant: 10.24 ms; sweep time: 184.32 s; scan number: 5; modulation amplitude: 1.0 G; modulation frequency: 100 kHz; microwave power: 20.13 mW.

Larger scale reaction between N-phenyl-1,2,3,4-tetrahydroisoquinoline and malononitrile

A mixture of *N*-phenyl-1,2,3,4-tetrahydroquinoline (1.05 g, 5.0 mmol), malononitrile (15.0 mmol), FeCl₂ (0.32 g, 2.5 mmol), toluene (15 mL) in a 100 mL round-bottom flask was magnetically stirred at 80 °C under an 1 atm of oxygen atmosphere. The reaction was monitored by TLC (petroleum ether/ethyl acetate (10:1, v/v)). After completion of the reaction (12 h), the reaction

mixture was cooled and separated by filtration to remove the catalyst. The filtrate was purified using flash chromatography to give 1.06 g of **3aa** in a 78% yield (Scheme S1).

Scheme S1. Larger scale reaction.

Kinetic isotope effect studies

For the calculation of intramolecular isotopic value, the reaction was performed as described above except for the use of $1a-d_1$ instead of 1a. When $1a-d_1$ was completely converted, Kinetic isotopic effects (KIE) values $k_{\rm H}/k_{\rm D}$ were calculated based on the GC-MS analysis. On the other hand, for the calculation of intermolecular isotopic value, the reactions were performed as described above except for the use of the mixture of $1a-d_5$ and 1a as the substrates. When the substrates were completely converted, KIE values $k_{\rm H}/k_{\rm D}$ were calculated based on the GC-MS analysis. For the calculation of KIE values, it was taken into account that substrates $1a-d_1$ and $1a-d_5$ were 92% and 99% pure, respectively.

Scheme S2.

Optimization of the reaction conditions

The reaction between *N*-phenyl-1,2,3,4-tetrahydroisoquinoline (**1a**) and malononitrile (**2a**) was selected as the model reaction to optimize the reaction conditions (Table S1). Initially, various iron salts were screened, and FeCl₂ gave the highest conversion and selectivity to **3aa** (Entries 1-6), while lower selectivity was observed for FeCl₂·4H₂O with comparable conversion of 1a. These results indicated that water in the system affected the selectivity. Oxygenated product was confirmed to be the main by-product (**4a**). Then the solvent, the ratio of **2a/1a** and the reaction temperature were investigated in sequence. After the optimization, a 95.3% conversion with a good 92.9% selectivity to the **3aa** could be obtained with toluene as the solvent (Entry 12). To further investigate the reaction conditions, various additives have also been investigated, and TBAC could obviously improve the selectivity to **3aa**. Although TBAI could efficiently increase the conversion of **1a**, the selectivity to oxygenated product increased (Entry 23). Some chloro salts including NaCl and NH₄Cl, were also tested, and the best results was obtained in case of TBAC (Entry 21). Finally, an excellent 95.5% selectivity was observed with a >99% conversion when prolonging the reaction time to 12 h (Entry 33).

Table S1.	Optimization	of the reaction	conditions.[a]
-----------	--------------	-----------------	----------------

Entry	Catalyst	Solvent	Temp. /℃	2a/1a	Conv. ^[b] /%	Sel. ^[b] /%
1	FeCl ₂	1,4-dioxane	80	3	85.5	91.8
2	FeCl ₂ ·4H ₂ O	1,4-dioxane	80	3	82.6	72.3
3	FeCl ₃	1,4-dioxane	80	3	39.9	91.2
4	FeCl ₃ ·6H ₂ O	1,4-dioxane	80	3	78.2	72.0
5	FeSO ₄ ·7H ₂ O	1,4-dioxane	80	3	trace	-
6	Fe(NO ₃) ₃ ·7H ₂ O	1,4-dioxane	80	3	trace	-
7	FeCl ₂	DMF	80	3	80.1	30.6
8	FeCl ₂	DMSO	80	3	>99	58.6
9	FeCl ₂	H_2O	80	3	trace	-
10	FeCl ₂	acetonitrile	80	3	86.1	50.4
11	FeCl ₂	1,2-dichloroethane	80	3	83.4	83.3
12	FeCl ₂	toluene	80	3	92.3	92.9
13	FeCl ₂	benzotrifluoride	80	3	90.8	83.8
14	FeCl ₂	dodecane	80	3	88.0	49.1
15	FeCl ₂	toluene	80	1	78.9	87.7
16	FeCl ₂	toluene	80	2	93.1	90.8
17	FeCl ₂	toluene	80	4	94.4	91.2
18	FeCl ₂	toluene	40	3	trace	-
19	FeCl ₂	toluene	60	3	74.5	92.7
20	FeCl ₂	toluene	100	3	>99	79.5
21 ^[c]	FeCl ₂ /TBAC	toluene	80	3	95.7	95.8
22 ^[c]	FeCl ₂ /TBAB	toluene	80	3	72.2	94.5
23 ^[c]	FeCl ₂ /TBAI	toluene	80	3	>99	90.9
24 ^[c]	FeCl ₂ /Na ₂ CO ₃	toluene	80	3	94.4	87.0
25 ^[c]	FeCl ₂ /NaHCO ₃	toluene	80	3	91.4	87.9
26 ^[c]	FeCl ₂ /CH ₃ COOH	toluene	80	3	63.8	87.2
27 ^[c]	FeCl ₂ /CF ₃ COOH	toluene	80	3	80.5	88.3

continued						
28 ^[c]	FeCl ₂ /KOH	toluene	80	3	72.9	86.3
29 ^[c]	FeCl ₂ /Cs ₂ CO ₃	toluene	80	3	27.8	85.7
30 ^[c]	FeSO ₄ ·7H ₂ O/TBAC	toluene	80	3	80.5	88.3
31 ^[c]	FeCl ₂ /NaCl	toluene	80	3	27.8	85.7
32 ^[c]	FeCl ₂ /NH ₄ Cl	toluene	80	3	80.5	88.3
33 ^[c,d]	FeCl ₂ /TBAC	toluene	80	3	>99	95.5

[a] Reaction conditions: **1a** 0.5 mmol, catalyst 50 mol%, reaction time 10 h, solvent 2 mL, oxygen atmosphere. [b] Based on the GC-MS analysis, and the by-products were not quantified. [c] The amount of additive was 5 mol% of the substrate. [d] 12 h.

Fig. S2. Effect of the amount of TBAC on the reaction

Reaction conditions: **1a** 0.5 mmol, **2a** 1.5 mmol, $FeCl_2$ 50 mol%, toluene 2 mL, 12 h, oxygen atmosphere. The conversion and selectivity were calculated based on GC-MS analysis.

Entry	1	3	Yield (without of TBAC ^[b]) /%	Yield (with TBAC ^[b]) /%
1	In	NC CN F 3na	23	62
2	Ib	NC CN 3ba	34	78
3	Im	NC CN -0 3ma	52	72
4		NC CN 3ka	42	47
5		NC CN 3qa	38	78

Table S2. The reaction results for some substrates with or without of TBAC.^[a]

[a] Reaction conditions: 1 0.5 mmol, 2a 1.5 mmol, FeCl₂ 50 mol%, 24 h, toluene 2 mL, oxygen atmosphere, TBAC 5 mol%.
[b] Based on the GC-MS analysis, and the by-products were not quantified.

Fig. S3. The catalytic results between 1i and 2a with or without TBAC

Reaction conditions: **1i** 0.5 mmol, **2a** 1.5 mmol, FeCl₂ 50 mol%, toluene 2 mL, oxygen atmosphere, TBAC 5 mol%. The conversion and selectivity were calculated based on the GC-MS analysis.

ESI-MS spectra of iminium intermediate

To demonstrate the possibility of the formation of iminium intermediate, the reaction was performed in the presence of FeCl₂ without a nucleophile, and the filtrate was analyzed by MS with ESI ion source (Finnigan TSQ Quantum Mass Spectrometer). The iminum could be obviously observed at 208.1 (Fig. S4).

Fig. S4. The MS-ESI spectra for the possible iminium intermediate.

Spectrometric data for the products:

5,12a-Dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3aa**): White solid, mp. 60.5 – 62.0 °C. ¹**H** NMR (300 MHz, CDCl₃) δ 7.62 – 7.56 (m, 1H), 7.51 (dd, *J* = 7.6, 0.7 Hz, 1H), 7.42 – 7.32 (m, 3H), 7.29 – 7.24 (m, 1H), 6.93 (td, *J* = 7.6, 0.8 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 5.20 (s, 1H), 3.93 – 3.78 (m, 1H), 3.28 – 3.12 (m, 2H), 2.96 – 2.82 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 135.6, 132.2, 129.8, 129.7, 129.0, 127.3, 125.6, 125.0, 122.0, 120.5, 115.1, 112.2, 109.6, 77.5, 77.1, 76.6, 72.0, 42.6, 42.5, 28.8. HRMS (ESI-TOF) Calcd. for C₁₈H₁₃N₃ [M+H]⁺ 272.1182, found 272.1179.

10-Methyl-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3ba**): Orange oil. ¹**H** NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 7.2 Hz, 1H), 7.44 – 7.36 (m, 2H), 7.29 – 7.26 (m, 2H), 6.73 (d, J = 7.6 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 5.33 (s, 1H), 3.84 (ddd, J = 12.0, 5.6, 2.4 Hz, 1H), 3.29 – 3.22 (m, 1H), 3.17 (ddd, J = 16.6, 11.1, 5.7 Hz, 1H), 2.94 – 2.87 (m, 1H), 2.59 (s, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 147.7, 135.7, 132.7, 130.8, 129.9, 129.6, 128.9, 127.2, 125.6, 125.3, 122.4, 115.3, 112.4, 110.2, 72.3, 43.3, 42.7, 28.8, 20.8. HRMS (ESI-TOF) Calcd. for C₁₉H₁₅N₃ [M+H]⁺ 286.1339, found 286.1332.

10-Methoxy-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3ca**): Yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.64 (d, J = 7.4 Hz, 1H), 7.37 (ddd, J = 21.1, 16.0, 7.7 Hz, 3H), 7.29 (s, 1H), 6.45 (d, J = 8.3 Hz, 1H), 6.40 (d, J = 8.0 Hz, 1H), 5.37 (s, 1H), 3.99 (s, 3H), 3.83 (ddd, J = 12.3, 5.7, 2.4 Hz, 1H), 3.27 (td, J = 11.8, 3.6 Hz, 1H), 3.14 (ddd, J = 16.6, 11.3, 5.7 Hz, 1H), 2.88 (d, J = 15.9 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 157.0, 151.5, 135.7, 133.8, 130.0, 129.5, 128.9, 127.3, 125.9, 114.9, 111.8, 107.7, 103.0, 102.5, 72.2, 56.0, 43.1, 40.8, 28.9. **HRMS** (ESI-TOF) Calcd. for C₁₉H₁₅N₃O [M+H]⁺ 302.1288, found 302.1281.

10-ethyl-5,12a-dihydroindolo[2,1-a]isoquinoline-12,12(6H)-dicarbonitrile (**3da**): Yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.71 – 7.60 (m, 1H), 7.47 – 7.32 (m, 3H), 7.32 – 7.28 (m, 1H), 6.80 (ddd, *J* = 27.5, 14.3, 4.6 Hz, 1H), 6.64 (d, *J* = 7.7 Hz, 1H), 5.26 (d, *J* = 44.0 Hz, 1H), 3.93 – 3.81 (m, 1H), 3.29 – 3.13 (m, 2H), 3.02 – 2.89 (m, 2H), 2.72 – 2.65 (m, 1H), 1.42 (d, *J* = 7.5 Hz, 1H), 1.29 (q, *J* = 7.6 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 150.0, 142.5, 135.8, 132.3, 131.6, 130.0, 129.6, 128.9, 127.3, 127.2, 127.2, 125.7, 125.6, 125.6, 124.7, 124.2, 120.5, 120.4, 115.5, 112.1, 110.2, 109.3, 107.3, 72.3, 71.9, 43.2, 42.9, 42.6, 29.4, 28.9, 28.8, 28.8, 24.9, 15.6, 14.1. **HRMS** (ESI-TOF) Calcd. for C₂₀H₁₇N₃ [M+H]⁺ 300.1495, found 300.1491.

10-(*tert*-Butyl)-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3ea**): Red-brown oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.65 – 7.60 (m, 1H), 7.64 – 7.61 (m, 1H), 7.55 (d, *J* = 1.9 Hz, 1H), 7.55 (d, *J* = 1.9 Hz, 1H), 7.45 – 7.37 (m, 3H), 7.29 (s, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 5.22 (s, 1H), 3.87 – 3.81 (m, 1H), 3.27 – 3.16 (m, 2H), 2.95 – 2.89 (m, 1H), 1.36 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 147.6, 144.6, 135.7, 129.9, 129.6, 129.2, 128.9, 127.2, 125.7, 122.0, 121.6, 115.3, 112.5, 109.8, 72.4, 43.2, 42.9, 34.6, 31.5, 28.8. **HRMS** (ESI-TOF) Calcd. for C₂₂H₂₁N₃ [M+H]⁺ 328.1808, found 328.1803.

10-Fluoro-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3fa**): Yellow oil. ¹**H** NMR (500 MHz, CDCl₃) δ 7.62 – 7.58 (m, 1H), 7.41 (pd, *J* = 7.4, 1.7 Hz, 2H), 7.31 (dd, *J* = 7.1, 2.5 Hz, 2H), 7.14 (td, *J* = 8.7, 2.6 Hz, 1H), 6.77 (dd, *J* = 8.7, 4.0 Hz, 1H), 5.26 (s, 1H), 3.80 (ddd, *J* = 7.5, 5.0, 2.9 Hz, 1H), 3.22 (dtd, *J* = 16.2, 10.7, 4.6 Hz, 2H), 2.97 – 2.91 (m, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 158.2, 156.3, 146.4, 135.5, 129.7, 129.5, 129.1, 127.3, 125.6, 123.1 (d, *J*_{C-F} = 8.4 Hz), 119.2-119.0 (d, *J*_{C-F} = 23.4 Hz), 114.6, 112.7-112.5 (d, *J*_{C-F} = 26.0 Hz), 111.0 (d, *J*_{C-F} = 7.8 Hz), 72.6, 43.4, 28.7. HRMS (ESI-TOF) Calcd. for C₁₈H₁₂FN₃ [M+H]⁺ 290.1088, found 290.1079.

10-Chloro-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3ga**): Yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.61 – 7.57 (m, 1H), 7.52 (d, *J* = 1.9 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.36 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.32 – 7.28 (m, 1H), 6.72 (d, *J* = 8.5 Hz, 1H), 5.27 (s, 1H), 3.87 – 3.82 (m, 1H), 3.29 – 3.16 (m, 2H), 2.95 – 2.90 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 148.2, 135.4, 132.3, 129.7, 129.3, 127.4, 125.6, 125.0, 123.1, 114.5, 111.7, 110.5, 72.1, 42.5, 28.7. **HRMS** (ESI-TOF) Calcd. for C₁₈H₁₂ClN₃ [M+H]⁺ 306.0793, found 306.0786.

10-Bromo-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3ha**): Yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.65 (d, J = 1.9 Hz, 1H), 7.60 – 7.57 (m, 1H), 7.49 (dd, J = 8.5, 1.9 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.31 (s, 1H), 6.67 (d, J = 8.5 Hz, 1H), 5.27 (s, 1H), 3.87 – 3.82 (m, 1H), 3.29 – 3.16 (m, 2H), 2.95 – 2.89 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 148.5, 135.4, 135.1, 129.7, 129.2, 127.9, 127.4, 125.6, 123.5, 114.4, 111.6, 110.9, 72.0, 42.5, 28.7. **HRMS** (ESI-TOF) Calcd. for C₁₈H₁₂BrN₃ [M+H]⁺ 350.0287, found 350.0282.

8-Methyl-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3ia**): Yellow solid, mp. 126.5 – 141.5 °C. ¹**H** NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 7.2 Hz, 1H), 7.50 – 7.37 (m, 3H), 7.30 (s, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 5.33 (s, 1H), 3.84 (ddd, *J* = 12.0, 5.7, 2.4 Hz, 1H), 3.29 – 3.23 (m, 1H), 3.17 (ddd, *J* = 16.7, 11.4, 5.7 Hz, 1H), 2.93 – 2.88 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 150.1, 136.6, 135.7, 132.1, 129.9, 129.6, 128.9, 127.3, 125.7, 122.5, 115.1, 111.7, 107.5, 71.8, 43.0, 42.0, 28.8, 18.2. HRMS (ESI-TOF): Calcd. for C₁₉H₁₅N₃ [M+H]⁺ 286.1339, found 286.1332.

8-Methoxy-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3ja**): Yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.64 (d, *J* = 7.4 Hz, 1H), 7.43 – 7.28 (m, 4H), 6.45 (d, *J* = 8.3 Hz, 1H), 6.40 (d, *J* = 8.0 Hz, 1H), 5.37 (s, 1H), 3.99 (s, 3H), 3.83 (ddd, *J* = 12.3, 5.8, 2.4 Hz, 1H), 3.30 – 3.24 (m, 1H), 3.14 (ddd, *J* = 16.5, 11.3, 5.7 Hz, 1H), 2.88 (dt, *J* = 16.0, 2.8 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 157.0, 151.5, 133.8, 129.5, 128.9, 127.3, 125.8, 114.9, 111.9, 107.6, 103.0, 102.5, 72.2, 56.0, 43.1, 40.8, 28.9. **HRMS** (ESI-TOF) Calcd. for C₁₉H₁₅N₃O [M+H]⁺ 302.1288, found 302.1288.

8-Ethyl-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3ka**): Yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.71 – 7.61 (m, 1H), 7.48 – 7.34 (m, 3H), 7.32 – 7.28 (m, 1H), 6.84 – 6.78 (m, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 5.26 (d, *J* = 44.1 Hz, 1H), 3.93 – 3.83 (m, 1H), 3.29 – 3.13 (m, 2H), 3.00 – 2.88 (m, 2H), 2.70 (q, *J* = 7.6 Hz, 1H), 1.43 (t, *J* = 7.6 Hz, 2H), 1.31 (d, *J* = 7.6 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 150.0, 149.8, 149.3, 142.5, 135.8, 135.7, 132.3, 130.0, 129.9, 128.9, 128.9, 127.2, 127.2, 125.7, 124.7, 120.5, 120.4, 119.5, 119.4, 115.5, 115.2, 112.4, 112.1, 109.3, 107.3, 72.3, 71.9, 42.9, 42.6, 29.4, 28.9, 24.9, 15.6, 14.1. **HRMS** (ESI-TOF) Calcd. for C₂₀H₁₇N₃ [M+H]⁺ 300.1495, found 300.1485.

9-methyl-5,12a-dihydroindolo[2,1-a]isoquinoline-12,12(6H)-dicarbonitrile (**3la**): Yellow solid, mp. 127.8-129.1 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 7.2 Hz, 1H), 7.41 (dd, *J* = 7.9, 6.2 Hz, 3H), 7.30 (s, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 5.33 (s, 1H), 3.84 (ddd, *J* = 11.9, 5.7, 2.4 Hz, 2H), 3.27 (dd, *J* = 11.4, 3.7 Hz, 1H), 2.92 (s, 1H), 2.59 (s, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 150.1, 136.6, 135.8, 132.1, 130.0, 129.6, 128.9, 127.3, 125.7, 122.5, 115.1, 111.7, 107.5, 71.8, 43.0, 42.0, 28.8, 18.2. HRMS (ESI-TOF) Calcd. for C₁₉H₁₅N₃ [M+H]⁺ 286.1339, found 286.1334.

9-methoxy-5,12a-dihydroindolo[2,1-a]isoquinoline-12,12(6H)-dicarbonitrile (**3ma**): Orange oil. ¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.59 (m, 1H), 7.40 (ddd, *J* = 9.1, 7.9, 4.9 Hz, 3H), 7.29 (t, *J* = 3.4 Hz, 1H), 6.47 (dd, *J* = 8.4, 2.3 Hz, 1H), 6.31 (d, *J* = 2.3 Hz, 1H), 5.24 (s, 1H), 3.86 – 3.83 (m, 4H), 3.27 – 3.16 (m, 2H), 2.91 (dd, *J* = 12.6, 1.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.5, 151.0, 129.6, 128.9, 127.2, 125.7, 125.5, 115.2, 113.9, 112.5, 105.4, 96.2, 72.4, 55.7, 42.4, 42.2, 28.8. HRMS (ESI-TOF) Calcd. for C₁₉H₁₅N₃O [M+H]⁺ 302.1288, found 302.1284.

9-fluoro-5,12a-dihydroindolo[2,1-a]isoquinoline-12,12(6H)-dicarbonitrile (**3na**): Orange oil. ¹H NMR (500 MHz, CDCl₃) δ 7.62 (d, J = 7.0 Hz, 1H), 7.44 – 7.35 (m, 3H), 7.30 (d, J = 7.0 Hz, 1H), 6.63 (t, J = 8.6 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 5.41 (s, 1H), 3.88 (ddd, J = 12.3, 5.8, 2.1 Hz, 1H), 3.34 – 3.27 (m, 1H), 3.18 (ddd, J = 16.8, 11.4, 5.7 Hz, 1H), 2.91 (d, J = 15.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 135.5, 134.4 (d, $J_{C-F} = 9.1$ Hz), 129.7, 129.2 (d, $J_{C-F} = 6.0$ Hz), 127.5, 125.7, 113.9, 111.0, 107.3, 107.3-107.2 (d, $J_{C-F} = 19.1$ Hz), 105.2, 72.3, 42.7, 29.7, 28.8. HRMS (ESI-TOF) Calcd. for C₁₈H₁₂FN₃ [M+H]⁺ 290.1088, found 290.1085.

8,11-Dimethyl-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**30a**): White solid, mp. 146.8 – 148.0°C. ¹**H NMR** (500 MHz, CDCl₃) δ 7.77 – 7.74 (m, 1H), 7.44 – 7.40 (m, 2H), 7.35 – 7.32 (m, 1H), 7.19 (d, *J* = 7.7 Hz, 1H), 6.94 (d, *J* = 7.7 Hz, 1H), 5.49 (s, 1H), 3.44 (dt, *J* = 11.4, 4.5 Hz, 1H), 3.27 – 3.20 (m, 1H), 3.14 (ddd, *J* = 14.7, 10.0, 4.4 Hz, 1H), 2.94 (dt, *J* = 15.8, 3.8 Hz, 1H), 2.59 (s, 3H), 2.37 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 152.3, 135.7, 133.9, 133.6, 129.7, 129.1, 129.0, 127.4, 126.7, 126.6, 125.7, 125.2, 115.9, 113.0, 71.7, 46.3, 43.8, 29.8, 18.3, 17.3. **HRMS** (ESI-TOF) Calcd. for C₂₀H₁₇N₃ [M+H]⁺ 300.1495, found 300.1491.

3-Methyl-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3pa**): Yellow solid, mp. 121.5 – 134.0 °C. ¹**H** NMR (500 MHz, CDCl₃) δ 7.52 (dd, *J* = 17.7, 7.7 Hz, 2H), 7.39 (dd, *J* = 11.3, 4.2 Hz, 1H), 7.22 (d, *J* = 7.9 Hz, 1H), 7.11 (s, 1H), 6.95 (t, *J* = 7.5 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 5.22 (s, 1H), 3.90 – 3.85 (m, 1H), 3.20 (dtd, *J* = 16.6, 11.3, 4.6 Hz, 2H), 2.87 (d, *J* = 15.6 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 138.8, 135.5, 132.2, 130.2, 128.1, 126.8, 125.5, 125.0, 122.0, 120.4, 115.1, 112.3, 109.6, 72.0, 42.8, 42.6, 28.7, 21.3. HRMS (ESI-TOF) Calcd. for C₁₉H₁₅N₃ [M+H]⁺ 286.1339, found 286.1332.

3-Methoxy-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3qa**): Yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.53 (d, *J* = 8.2 Hz, 2H), 7.39 (t, *J* = 7.7 Hz, 1H), 6.97 – 6.93 (m, 2H), 6.80 (dd, *J* = 10.7, 5.2 Hz, 2H), 5.21 (s, 1H), 3.87 – 3.84 (m, 4H), 3.26 – 3.13 (m, 2H), 2.90 – 2.83 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.7, 149.6, 137.3, 132.2, 126.9, 125.0, 122.0, 120.5, 115.2, 114.6, 113.2, 112.4, 109.7, 71.9, 55.3, 43.0, 42.5, 29.1. **HRMS** (ESI-TOF) Calcd. for C₁₉H₁₅N₃O [M+H]⁺ 302.1288, found 302.285.

2,3-Dimethoxy-5,12a-dihydroindolo[2,1-*a*]isoquinoline-12,12(6*H*)-dicarbonitrile (**3ra**): Yellow oil. ¹**H** NMR (500 MHz, CDCl₃) δ 7.54 – 7.51 (m, 1H), 7.39 (td, *J* = 7.8, 1.1 Hz, 1H), 7.05 (s, 1H), 6.95 (td, *J* = 7.6, 0.7 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 6.74 (s, 1H), 5.23 (s, 1H), 3.97 (s, 3H), 3.92 (s, 3H), 3.86 (ddd, *J* = 12.1, 5.7, 2.2 Hz, 1H), 3.27 – 3.20 (m, 1H), 3.13 (ddd, *J* = 16.8, 11.2, 5.7 Hz, 1H), 2.80 (d, *J* = 15.7 Hz, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 149.6, 149.3, 148.2, 132.2, 128.3, 125.0, 121.8, 121.3, 120.4, 115.3, 112.4, 112.0, 109.7, 108.8, 108.1, 71.9, 56.1, 43.1, 42.5, 28.3. HRMS (ESI-TOF) Calcd. for C₂₀H₁₇N₃O₂ [M+H]⁺ 332.1394, found 332.1394.

2-bromo-5,12a-dihydroindolo[2,1-a]isoquinoline-12,12(6H)-dicarbonitrile (**3sa**): Red-brown oil. ¹**H** NMR (300 MHz, CDCl₃) δ 7.71 (s, 1H), 7.55 – 7.47 (m, 2H), 7.42 – 7.35 (m, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.77 (d, *J* = 8.1 Hz, 1H), 5.16 (s, 1H), 3.91 – 3.82 (m, 1H), 3.13 (ddd, *J* = 27.0, 12.2, 4.4 Hz, 2H), 2.86 (d, *J* = 15.3 Hz, 1H). ¹³**C** NMR (126 MHz, CDCl₃) δ 149.6, 138.8, 135.5, 132.2, 130.2, 128.1, 126.8, 125.5, 124.9, 122.0, 120.4, 115.1, 112.3, 109.6, 72.0, 42.8, 42.6, 28.7, 21.3. **HRMS** (ESI-TOF) Calcd. for C₁₈H₁₂BrN₃ [M+H]⁺ 350.0287, found 350.0283.

Ethyl 12-cyano-5,6,12,12a-tetrahydroindolo[2,1-*a*]isoquinoline-12-carboxylate (**3ab**): Yellow oil. ¹**H** NMR (500 MHz, CDCl₃) δ 7.24 – 7.17 (m, 2H), 7.17 – 7.14 (m, 1H), 7.11 (dd, *J* = 6.7, 1.8 Hz, 2H), 6.72 (t, *J* = 7.3 Hz, 1H), 6.59 (d, *J* = 7.8 Hz, 2H), 4.40 (s, 1H), 3.38 (d, *J* = 17.1 Hz, 1H), 3.33 – 3.27 (m, 2H), 3.02 (d, *J* = 17.1 Hz, 1H), 1.28 (s, 3H), 0.89 (dt, *J* = 19.0, 6.6 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.7, 142.2, 142.1, 135.8, 134.9, 132.3, 129.2, 128.5, 128.1, 126.6, 123.4, 123.2, 119.0, 114.7, 57.0, 54.7, 34.6, 34.3, 29.7. HRMS (ESI-TOF) Calcd. for C₂₀H₁₈N₂O₂ [M+H]⁺ 319.1441, found 319.1436.

5,6-Dihydroindolo[2,1-*a*]isoquinoline-12-carbonitrile (**4aa**): Yellow oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.50 (d, *J* = 7.3 Hz, 1H), 7.43 – 7.31 (m, 5H), 7.03 (dd, *J* = 15.0, 7.7 Hz, 3H), 5.41 (d, *J* = 4.7 Hz, 1H), 4.24 (d, *J* = 4.7 Hz, 1H), 3.84 (ddd, *J* = 12.3, 7.4, 5.0 Hz, 1H), 3.59 – 3.53 (m, 1H), 3.22 – 3.15 (m, 1H), 3.13 – 3.05 (m, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 140.8, 135.2, 133.1, 129.9, 128.7, 128.4, 127.9, 126.3, 125.7, 123.9, 122.4, 119.5, 117.4, 109.9, 80.6, 40.4, 28.7. **HRMS** (ESI-TOF) Calcd for C₁₈H₁₅N₃ [M+H]⁺ 274.1339, found 274.1335.

References

- [1] L. Shi, M. Wang, C.-A. Fan, F.-M. Zhang, Y.-Q. Tu, Org. Lett. 2003, 5, 3515–3517.
- [2] E. Boess, C. Schmitz, M. Klussmann, J. Am. Chem. Soc. 2012, 134, 5317–5325.

 $\begin{array}{c} 7.75\\$

