Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

1	Supporting Information
2	Electrochemical Sensor-Adsorbent for Lead (Pb ²⁺) Ions in Aqueous
3	Environment by Katiragum-Arginine Schiff Base
4	Rakesh Kumar Saren ¹ , Shankha Banerjee ² , Barun Mondal ¹ , Sanjib Senapati ² and Tridib
5	Tripathy ^{1*}
6 7	¹ Postgraduate Division of Chemistry, Midnapore College (Autonomous), Midnapore, PaschimMedinipur, 721101, West Bengal, India.
8	² Department of Biotechnology, BJM School of Bioscience, Indian Institute of Technology
9	Madras, Chennai 600036, India.
10	
11	
12	
13	
14	
15	
16	
17	
18 19 20	* Corresponding author E-mail:tridib.tripathy@midnaporecollege.ac.in, <u>tridib_tripathy@yahoo.co.in</u> Tel/Fax: +913222275847

21 **1. Experimental**

22 **1.1 Determination of dialdehyde content**

The dialdehyde content in KGD is determined spectrophotometrically according to the previous report.¹ The detail procedure is given in our previous communication.² Shortly, a fixed amount of KGD is allowed to react with 2,4- dinitrophenyl hydrazine (2,4-DNPH) in water. The solution is vigorously stirred upto 90 min. The supernatant after centrifugation is analyzed by UV-VIS spectrophotometer (Schimadzu, Japan) at λ = 361 nm to estimate the unreacted DNPH. The dialdehyde content (DAC) in KGD is calculated by using the following equation

29

30
$$DAC(mmole/g) = \frac{Reacted 2,4-DNPH(mmol/g)/198.14}{Conc(\%)x10^{-4}}$$
 Eq. (S1)

31 The dialdehyde content is found to be in the KGD 68.67 %.

32 **1.2 Detection Limit**

Following equation is used for the calculation of limit of detection (LOD).³

$$LOD = 3\sigma/K Eq. (S2)$$

Where, σ is the standard deviation obtained from the graph of I (A) versus concentration of KGDR (Fig. S7b) and K refers to the slope of the calibration curve obtained by plotting current I (A) vs concentration of Pb²⁺ (Fig. 4b).

38

39

40

42 **1.3 Adsorption Kinetics**

46

43 Pseudo first order, pseudo second order kinetics and intra particle diffusion kinetic models are44 used to evaluate the adsorption kinetics.

45 The pseudo first order or Lagergren kinetic model is expressed by the following equation⁴

$$\ln(q_e - q_t) = \ln q_e - k_1 t \qquad \text{Eq. (S3)}$$

47 where, q_e and q_t are the amount of Pb²⁺ adsorbed by KGDR at equilibrium and at the time t 48 respectively in mg g⁻¹, k_1 is the pseudo first order rate constant which is calculated from the slope 49 of the plot $\ln(q_e - q_t)$ versus t.

50 The pseudo second order kinetic model is expressed by the following equation⁵

51
$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
 Eq. (S4)

52 Where, k_2 is the pseudo second order rate constant in g mg⁻¹ min⁻¹ is calculated from the slope 53 and intercept of the plot of t/q_t versus t.

54 The intra particle diffusion model is developed by Weber and Morris,⁶ which explains the 55 diffusion kinetics and mechanism of adsorption. It is represented as:

56
$$q_t = k_d t^{1/2} + c$$
 Eq. (S5)

57 Where, k_d (mg.g⁻¹.min^{-1/2}) is the intra particle diffusion rate constant, c is the boundary layer 58 thickness. k_d and c are calculated from the slope and the intercept of the plot q_t versus $t^{1/2}$ 59 respectively.

60 **1.4 Adsorption isotherms**

Three adsorption isotherm models namely Freundlich, Langmuir and Temkin are used to describe the adsorption equilibrium between the adsorbed $[Pb^{2+}]$ and the residual $[Pb^{2+}]$ in the solution over the entire studied concentration range.

Freundlich isotherm model is used to express the adsorption process onto the heterogeneous
 surface of the adsorbents. The isotherm is expressed by⁷

$$q_e = K_F C_e^{1/n}$$
 Eq. (S6)

67 The linearized form of the adsorption is expressed by the following equation

$$lnq_e = lnK_F + \frac{1}{n}lnC_e \qquad \text{Eq. (S7)}$$

69 Where, K_F (L.g⁻¹) and 1/n are Freundlich adsorption isotherm constants respectively. K_F and 1/n 70 are calculated from the slope and intercept of the straight line plot lnq_e versus lnC_e.

71 In the Langmuir isotherm model, it is assumed that adsorption process takes place at the 72 homogeneous sites of adsorbent's surface which is filled with non-interacting adsorbent 73 molecules and the adsorption process follows monolayer adsorption mechanism. The linear form 74 of the equation is expressed by⁸

75
$$\frac{1}{q_e} = \frac{1}{bq_m c_e} + \frac{1}{q_m}$$
 Eq. (S8)

Where $C_e (mg.L^{-1})$ represents the equilibrium Pb^{2+} ion concentration, $q_e (mg.g^{-1})$ denotes amount of Pb^{2+} adsorbed onto the KGDR at equilibrium. $q_m (mg.g^{-1})$ and b (L.mg^{-1}) are Langmuir constants, which are calculated from the slope and intercept of the linear plot of $1/q_e$ versus $1/C_e$. 79 The characteristic parameter of Langmuir isotherm is expressed by a dimensionless parameter
80 R_L, called equilibrium parameter which is represented as follows

81
$$R_L = \frac{1}{1+bC_0}$$
 Eq. (S9)

82 The R_L value lies within 0 to 1 indicate a favourable adsorption process.

Temkin isotherm model consider the adsorbent-adsorbate interaction where it is assumed that, increasing the surface coverage by adsorption linearly decreases the heat of adsorption of all the molecules in the layer. Temkin adsorption isotherm model is expressed by the following equation ⁹

87
$$q_e = \frac{RT}{b_T} ln A_T + \frac{RT}{b_T} ln C_e$$
 Eq. (S10)

88 Where A_T is the Temkin isotherm constant (L.g⁻¹), T is the absolute temperature, R is the 89 universal gas constant and b_T is the Temkin constant related to the heat of adsorption B (J.mole⁻¹) 90 [B= RT/b_T]. The value of A_T and b_T are calculated from slope and intercept of the plot q_e versus 91 ln C_e.

92 **1.5 Adsorption thermodynamics**

93 Van't Hoff equation¹⁰ is used to calculate various thermodynamic parameters like the enthalpy 94 change (Δ H°), changes in entropy (Δ S°) of the adsorption in the temperature range 10°C to 60°C. 95 The Van't Hoff equation is

96
$$lnK_T = \frac{\Delta S^\circ}{R} - \frac{\Delta H^\circ}{RT}$$
 Eq. (S11)

97 The standard free energy (ΔG°) is calculated by the following equation

98
$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$
 Eq. (S12)

99 R is the universal gas constant (8.314 J.mol-1.K-1). The ΔH° and ΔS° are calculated from the 100 linear plot between lnK_T versus 1/T. K_T is the thermodynamic equilibrium constant which can be 101 calculated by using following equation¹¹

102
$$K_T = \frac{S_e}{C_0 - S_e}$$
 Eq. (S13)

103 Where S_e is the concentration of Pb^{2+} adsorbed onto KGDR at equilibrium and C_0 is the initial 104 concentration of Pb^{2+} .

- **Fig. S4** High Resolution Mass Spectral analysis of KGD showed characteristic peaks for (a) $C_9H_{14}O_5$ molecular unit, (b) $C_9H_{14}O_5$ molecular unit with K⁺ cation, (c) $C_{11}H_{17}O_9$ molecular unit
- 162 with Na⁺ cation, and (d) $C_{11}H_{16}O_{10}$ molecular unit with K⁺ cation.

Fig. S7 (a) CV analysis of KGDR/GCE in 0.1 (M) ABS (pH 5) at various concentrations of
KGDR (2µL to 20µL). (b) Calibration curve of peak current (I (A)) versus concentration of
KGDR.

Fig. S8 Effect of (a) contact time (b) pH (c) temperature (d) adsorbent dosage of Pb^{2+} ion adsorption onto the surface of KGDR.

260 **Table S1** Comparison of KGDR/GCE with some previously reported works for sensing of Pb^{2+}

261 ions.

Modifier	Method	Detection limit (µM)	Reference
CB-18-crown-6/GCE	DPASV	1.5	12
ZnFe2O4/GCE	DPASV	0.56	13
Salicylic acid	CV	0.18	14
P(DPA-co-	DPASV	0.165	15
2ABN)/GC-ME			
GSH-Fe3O4/GCE	SWASV	0.182	16
G/PANI/PS	CV	3.3	17
nanoporous			
fiber/GCE			
MWCNTs/synthesis	SWASV	0.25	18
Schiff base/CPE			
SWCNHs/SPE	SWASV	0.4	19
ZnO-Gr/SPCE	ASV	0.8	20
KGDR/GCE	CV	0.146	This work

262 DPASV: Differential pulse anodic stripping Voltammetry. CV: Cyclic Voltammetry

264

265

Table S2 Summary of the CV analysis of KGDR/GCE towards Pb^{2+} sensing from real samples.

267	Samples	Added Pb ²⁺	Obtained	Recovery %	RSD (%)
268		ion (µM)	(µM)		
	1	5	4.92	98.4	4.7
269	2	10	0.80	08.0	3.2
	2	10	9.89	98.9	5.2
270	3	15	14.95	99.67	3.8

²⁶³ SWASV: square wave anodic stripping Voltammetry. ASV: anodic stripping Voltammetry

Table S3 Various parameters of adsorption kinetics along with their R² values for Pb²⁺ adsorption onto the surface of KGDR (Condition: Pb²⁺ ion concentration 1 g/L, 1.5 g/L, 2.07 g/L, 2.5 g/L, 3 g/L and 3.5 g/L, pH = 5, temperature 40°C and contact time 125 min).

Pseudo-first-order-kinetics								
Concentration of Pb ²⁺ ion (mg/L)	1000	1500	2070	2500	3000	3500		
$k_1 (min^{-1})$	0.02012	0.01572	0.01836	0.02536	0.01828	0.02668		
Standard Deviation (SD)	0.1096	0.01273	0.0986	0.2045	0.0109	0.1175		
Co-relation Coefficient (R ²)	0.94513	0.88383	0.94662	0.88478	0.93958	0.96366		
		Pseudo-sec	ond-order	-kinetics				
Concentration of Pb ²⁺ ion (g/L)	1000	1500	2070	2500	3000	3500		
k_2 (g/mg/min)	6.436 x 10 ⁻⁵	4.866 x 10 ⁻⁵	6.262 x 10 ⁻⁵	1.202 x 10 ⁻⁵	8.327 x 10 ⁻⁵	3.948 x 10 ⁻⁵		
Standard Deviation (SD)	6.61 x 10 ⁻³	8.52 x 10 ⁻³	3.64 x 10 ⁻³	1.55 x 10 ⁻³	2.08 x 10 ⁻³	2.47 x 10 ⁻⁴		
Co-relation Coefficient (R ²)	0.99290	0.98167	0.99535	0.99894	0.99725	0.99995		
	Intra particle diffusion							
Concentration of Pb ²⁺ ion (g/L)	1000	1500	2070	2500	3000	3500		
$k_2 \ (mg/g.min^{-1/2})$	25.452	32.229	30.808	21.468	27.096	15.219		
c (mg/g)	189.474	225.439	391.122	650.323	754.59	1135.772		
Standard Deviation (SD)	16.324	20.542	18.149	15.348	15.961	18.388		
Co-relation Coefficient (R ²)	0.93622	0.93697	0.94573	0.92175	0.94575	0.80065		

Table S4 Various parameters of adsorption isotherms along with their R^2 values for Pb^{2+} adsorption onto the surface of KGDR (Condition: Pb^{2+} ion concentration 2.07 g/L, pH = 5, temperature 40°C and contact time 125 min).

278	Langmuir Isotherm				
	$q_{\rm m} ({\rm mg.g^{-1}})$	5482.46			
279	b (L.mg ⁻¹)	5.985 x 10-5			
	RL	0.8902			
280	Standard Deviation (SD)	1.8896 x 10-5			
	Co-relation coefficient (R ²)	0.99746			
281	Freundlich Isotherm				
	$K_F (L.g^{-1})$	0.00704			
282	n	0.63			
	Standard Deviation (SD)	0.03302			
283	Co-relation coefficient (R ²)	0.98709			
	Temkin Isotherm				
284	$A_T (L.g^{-1})$	1.809			
	B (J.mole ⁻¹)	0.00995			
285	Standard Deviation (SD)	0.0351			
	Co-relation coefficient (R ²)	0.9629			

Table S5 Various thermodynamic parameter for Pb^{2+} adsorption onto the surface of KGDR (Condition: Pb^{2+} ion concentration 2.07 g/L, pH = 5, temperature 20°C to 60°C and contact time 125 min).

Thermodynamic Parameters							
ΔH° (KJ/mole)			3.62				
ΔS° (J/K/mole)			14.384				
Temperature (K)	283	293	303	313	323	333	
ΔG° (KJ/mole)	-0.45	-0.595	-0.738	-0.882	-1.026	-1.169	

295

296

297

298 **References**

- 1. B. Gupta, M. Tummalapalli, B. L. Deopura and M. S. Alam, *Carbohydr. Polym.*, 2013, 98, 1160-1165.
- 2. D. Sasmal, S. Banerjee, S. Senapati and T. Tripathy, J. Environ. Chem. Eng., 2020, 8, 103741.
- 302 3. B. Mondal, J. Ray, S. Jana, S. K. Bhanja and T. Tripathy, *New J. Chem.*, 2018, 42, 19707303 19719.
- 4. S. K. Lagergren, Sven. Vetenskapsakad. Handingarl, 1898, 24, 1-39.
- 305 5. Y. S. Ho, J. Hazard. Mater., 2006, **136**, 681-689.
- 306 6. W. J. Weber Jr and J. C. Morris, J. Sanit. Eng. Div., 1963, **89**, 31-59.
- 307 7. H. Freundlich, *Z Phys Chem* (*N F*), 1907, **57**, 385-470.
- 308 8. Y. S. Ho, C. T. Huang and H. W. Huang, *Process Biochem*, 2002, 37, 1421-1430.
- 309 9. T. Karthikeyan, S. Rajgopal and L. R. Miranda, J. Hazard. Mater., 2005, **124**, 192-199.

- 10. S. Jana, J. Ray, S. K. Bhanja and T. Tripathy, J. Appl. Polym. Sci., 2018, 135, 44849.
- 311 11. S. Jana, S. S. Pradhan and T. Tripathy, J. Polym. Environ., 2018, 26, 2730-2747.
- 12. N. Serrano, A. González-Calabuig and M. Del Valle, *Talanta*, 2015, **138**, 130-137.
- 13. A. K. NS, S. Ashoka and P. Malingappa, J. Environ. Chem. Eng., 2018, 6, 6939-6946.
- 314 14. G. K. Raghu, S. Sampath and M. Pandurangappa, J. Solid State Electrochem., 2012, 16, 1953-1963.
- 15. M. F. Philips, A. I. Gopalan and K. P. Lee, 2012, J. Hazard. Mater. 237, 46-54.
- 317 16. M. Baghayeri, A. Amiri, B. Maleki, Z. Alizadeh and O. Reiser, *Sens. Actuators B* 318 *Chem.*, 2018, **273**, 1442-1450.
- 319 17. N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul, N. Rodthongkum,
 320 Sens. Actuators B Chem., 2015, 207, 526-534.
- 18. A. Afkhami, H. Ghaedi, T. Madrakian and M. Rezaeivala, *Electrochim. Acta*, 2013, **89**, 377 386.
- 323 19. Y. Yao, H. Wu and J. Ping, Food Chem., 2019, 274, 8-15.
- 20. J. Yukird, P. Kongsittikul, J. Qin, O. Chailapakul and N. Rodthongkum, *Synth. Met.*, 2018,
 245, 251-259.