Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Preparation, Characterization and Reactivity of

Trifluoromethoxy Palladium(II) Complexes

Songsong Xu,[†] Yingbo Shao,[‡] Hanliang Zheng,[‡] Xuebing leng,[†] Xiaosong Xue,^{‡,†,} * Qilong Shen^{†,*}

[†]Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China

[‡]State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China

Table of Contents

General information	S2
Figure S1	S3
Figure S2	S3
General procedure for preparation of [L ₂ Pd(Aryl)(I)]	S4
General procedure for the synthesis of [L ₂ Pd(Aryl)(OCF ₃)] 2a/b	S5
General procedure for the synthesis of complex [(L)Pd(Ar)(OCF ₃)] 5a-d	S7
Computational details	S14
Reference	S37
¹ H and ¹⁹ F NMR spectroscopic data	S38
X-ray diffraction data of complexes 2a, 2b, 3b', 3c, 5a	S59

General information

All glassware was oven or flame dried for several hours prior to use. Solvents were freshly degassed according to the procedures in Purification of Laboratory Chemicals prior to use. Tetrahydrofuran, Toluene, Diethyl ether, pentane and benzene were distilled from Na⁰/benzophenone. All syntheses were conducted using standard Schlenk techniques or in an inert atmosphere glovebox. (1,5-COD)Pd(CH₂TMS)₂ was prepared according to a procedure reported in the literature¹ and stored at -35 °C in an argon filled glovebox when not in use. Unless otherwise noted, all other reagents and starting materials were purchased from commercial sources and used without further purification. ¹H NMR spectra were recorded on a 600 MHz, 500 MHz or 400 MHz spectrometer. ¹⁹F NMR spectra were recorded on a 564 MHz, 470 MHz or 376 MHz spectrometer. ³¹P NMR spectra were recorded on a 243 MHz, 202 MHz or 162 MHz spectrometer. ¹H NMR chemical shifts are reported in parts per million (ppm) relative to TMS, with the residual NMR solvent peak used as an internal reference. ¹⁹F NMR chemical shifts are reported in ppm and are referenced to the solvent lock. ³¹P NMR spectra were calibrated to an external standard of neat H₃PO₄ (δ 0.0 ppm).Coupling constants are reported in hertz. The following abbreviations were used to explain the multiplicities: s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet; br = broad.

Figure S1. (a) Variable temperature ¹⁹F NMR of **3b**. (b) X-ray structure of **3b**'.

Figure S2. ¹⁹F NMR of the anion exchange reaction using PhF as an internal standard.

General procedure for preparation of [L₂Pd(Aryl)(I)]

Synthesis of [(TMEDA)Pd(4-CF₃-Ph)(I)] 1a. [(Tmeda)Pd(Aryl)(I)] was synthesized via a modified literature procedure.² Under nitrogen, Pd(dba)₂ (11.5 g, 20.0 mmol) was weighed into a 250 mL round bottom flask and THF (150 mL) was added. TMEDA (3.50 g, 30.0 mmol) was added, and the resulting mixture was stirred at 25 °C for 15 min. The appropriate aryl iodide (36.0 mmol, 1.80 equiv.) was added, and the mixture was heated at 60 °C for 30 min. The mixture was filtered through a plug of Celite, and the solvent was removed under reduced pressure. The residue was washed with hexane (20 mL × 3) and then diethyl ether (50 mL × 3) to remove all residual dibenzylidene acetone (dba). The target complex was then dried *in vacuo* and used without further purification.

[(TMEDA)Pd(4-CF₃-Ph)(I)] 1a. Complex **1a** was obtained according to the general procedure as a yellow solid (20.0 mmol scale, 6.8 g, 69% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.8 Hz, 2 H), 7.15 (d, *J* = 7.9 Hz, 2 H), 2.74 (t, *J* = 5.5 Hz, 2 H), 2.69 (s, 6 H), 2.57 (t, *J* = 5.5 Hz, 2 H), 2.32 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 61.74 (s) ppm. ¹H and ¹⁹F NMR were consistent with those reported in the literature.² **Synthesis of [(4-CH₃-Py)₂Pd(4-CF₃-Ph)(I)] 1b.** [(4-CH₃-Py)₂Pd(4-CF₃-Ph)(I)] was synthesized via a modified literature procedure.³ Pd(dba)₂ (5.70 g, 10.0 mmol) was added to a solution of 4-iodobenzotrifluoride (6.80 g, 25.0 mmol) and 4-methylpyridine (9.30 g, 100 mmol) in THF (20.0 mL) at room temperature. The mixture was stirred at room temperature for another 30 min, and then hexane (30 mL) was added. The precipitate was filtered and washed with diethyl ether (50 mL × 4) and hexane (50 mL × 4) to give complex **1b** as yellow crystals (2.7 g, 48% yield). The complex was used directly without further purification.

General procedure for the synthesis of $[L_2Pd(Aryl)(OCF_3)]$ 2a/b. In a glovebox under an argon atmosphere, a 20 mL scintillation vial equipped with an oven-dried stirring bar was charged with $[L_2Pd(Ar)(I)]$ (1.0 mmol, 1.0 equiv), and THF (3.0 mL). To the orange solution, AgOCF₃ (1.0 M in acetonitrile, stored under an argon atmosphere at -35 °C) (1.1 mL, 1.1 mmol, 1.0 equiv.) was added slowly by a plastic syringe. The mixture was stirred violently at room temperature, and the color of the mixture turned from orange to yellow. Upon completion, the crude was filtered through a 0.22 µm microfiltration membrane[®] using THF (2.0 mL) as eluent. The filtrate was collected, concentrated to ~0.5 mL, then Et₂O (30 mL) was added. An off-white colored precipitate was formed. The mixture was stored in a -35 °C freezer for 1 h. The precipitate was collected by filtration and washed with Et₂O (10 mL × 2), and dried under vacuum to give [L₂Pd(Ar)(OCF₃)] as a solid.

[(TMEDA)Pd(4-CF₃-Ph)(OCF₃)] 2a. Complex 2a was obtained according to the general procedure as a yellow solid (1.5 mmol scale, 461.9 mg, 68% yield). ¹H NMR (400 MHz, THF-*d*₈) δ 7.53 (d, J = 7.7 Hz, 2 H), 7.13 (d, J = 7.7 Hz, 2 H), 2.78 (t, J = 5.6 Hz, 2 H), 2.61 (t, J = 5.6 Hz, 2 H), 2.57 (s, 6 H), 2.42 (s, 6 H); ¹⁹F NMR (376 MHz, THF-*d*₈) δ -31.98 (s, 3 F), -62.46 (s, 3 F) ppm. Anal. Calcd. for C₁₄H₂₀F₆N₂OPd: C, 37.14; H, 4.45; N, 6.19. Found: C, 37.18; H, 4.63; N, 6.35.

[*trans*-(4-CH₃-Py)₂Pd(4-CF₃-Ph)(OCF₃)] 2b. Complex 2b was obtained according to the general procedure as a white solid (1.0 mmol scale, 315.3 mg, 60% yield). ¹H NMR (400 MHz, THF- d_8) δ 8.46 (d, J = 6.2 Hz, 4 H), 7.42 (d, J = 7.9 Hz, 2 H), 7.18 (d, J = 6.2 Hz, 4 H), 7.10 (d, J = 8.1 Hz, 2 H), 2.32 (s, 6 H); ¹⁹F NMR (376 MHz, THF- d_8) δ -

31.40 (br, 3 F), -62.77 (s, 3 F); ¹⁹F NMR (565 MHz, THF-*d*₈, 253 K) δ -31.34 (s, 3 F), -62.52 (s, 3 F) ppm. Anal. Calcd. for C₂₂H₁₈F₆N₂OPd: C, 45.95; H, 3.47; N, 5.36. Found: C, 45.93; H, 3.58; N, 5.35.

4-(Trifluoromethyl)benzoyl fluoride 2c. The yield (98%) and chemical shift were determined by ¹⁹F NMR spectroscopy using (trifluoromethoxy)benzene (-58.0 ppm) as reference. Characterization of **2c** in reaction solution: ¹⁹F NMR (unlocked) δ 18.81 (s, 1 F) -63.72 (s, 3 F) ppm. GC-MS (EI): 192 [M]⁺.

Synthesis of [(DPPF)Pd(4-CH₃-Py)(4-CF₃-Ph)][OTf] 3c. In a glovebox under an argon atmosphere, a 25 mL round-bottom flask equipped with an oven-dried stirring bar was charged with 2b (156.6 mg, 0.3 mmol), DPPF (166.3 mg, 0.3 mmol), toluene (3.0 mL) and THF (1.0 mL). After stirred at room temperature for 5 min, TMSOTf (80.0 mg, 0.36 mmol) was added. The mixture was stirred violently at room temperature for another 5 min, resulted in a yellow suspend. Upon completion, Et₂O (20 mL) was added and a precipitate was formed. The solvent was decanted and the residue was washed by a mixed solvent of Et₂O/THF (22 ml, v/v = 10:1) twice. Complex 3c (270.3 mg, 87%) was obtained as a yellow solid.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.94 (d, *J* = 5.7 Hz, 2 H), 7.60 – 7.39 (m, 20 H), 7.06 – 7.02 (m, 2 H), 6.77 – 6.72 (m, 2 H), 4.46 – 4.41 (m, 8 H), 2.14 (s, 3 H); ¹⁹F NMR (376 MHz, CD₂Cl₂) δ -62.73 (s, 3 F), -78.85 (s, 3 F); ³¹P NMR (162 MHz, CD₂Cl₂) δ 28.81 (d, *J* = 26.8 Hz), 16.30 (d, *J* = 26.9 Hz) ppm. Anal. Calcd. for C₄₈H₃₉F₆FeNO₃P₂PdS: C, 55.01; H, 3.75; N, 1.34; Found: C, 54.91; H, 3.95; N, 1.54. Single crystals of complex **3c** were obtained by layering a solution of complex **3c** in dichloromethane with ether at -35 °C.

General procedure for the synthesis of complex [(L)Pd(Ar)(I)].⁴ In an argon-filled glovebox, an oven-dried scintillation vial (20 mL) equipped with a magnetic stir bar was charged with ligand (1.1 equiv) and ArX (3.0 equiv). Cyclohexane was added dropwise with stirring until the ligand was dissolved. [(COD)Pd(CH₂SiMe₃)₂] (1.0 equiv) was added rapidly in one portion. The mixture was allowed to stir overnight at room temperature. Pentane (10.0 mL) was added and the mixture was placed into a - 20 °C freezer for 1 h. The vial was then taken outside of the glovebox, and the precipitate was filtered through a sintered glass frit, washed with pentane for three times, and dried under reduced pressure to afford complex [(L)Pd(Ar)(I)].

[('Bu-BrettPhos)Pd(4-CF₃-Ph)(I)] 4a. Following the general procedure, a mixture containing 'Bu-BrettPhos (1.07 g, 2.2 mmol), 4-iodobenzotrifluoride (1.63 g, 6.00 mmol), and [(COD)Pd(CH₂SiMe₃)₂] (0.78 g, 2.0 mmol) was stirred at room temperature in cyclohexane (7.0 mL) to afford complex 4a (0.83 g, 40% yield) as a yellow solid. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.29 – 7.25 (m, 2 H), 7.11 – 7.07 (m, 2 H), 6.98 – 6.92 (m, 3 H), 6.85 (d, *J* = 8.8 Hz, 2 H), 3.79 (s, 3 H), 3.30 (s, 3 H), 3.12 – 3.08 (m, 1 H), 2.62 – 2.56 (m, 2 H), 1.60 (d, *J* = 6.7 Hz, 6 H), 1.46 – 1.29 (m, 24 H), 0.80 (d, *J* = 6.6 Hz, 6 H); ¹⁹F NMR (376 MHz, CD₂Cl₂) δ -61.90 (s); ³¹P NMR (162 MHz, CD₂Cl₂) δ 65.33 (s) ppm. Anal. Calcd. for C₃₈H₅₃F₃IO₂PPd: C, 52.88; H, 6.19; Found: C, 52.46; H, 6.05.

[(BrettPhos)Pd(4-CF₃-Ph)(I)] 4b. Following the general procedure, a mixture containing BrettPhos (1.18 g, 2.20 mmol), 4-iodobenzotrifluoride (1.63 g, 6.00 mmol), and [(COD)Pd(CH₂SiMe₃)₂] (0.78 g, 2.0 mmol) was stirred at room temperature in cyclohexane (5.0 mL) to afford complex **4b** (1.22 g, 67%) as a yellow solid. Clean ¹H NMR spectra for complex **4b** could not be obtained due to its very rapid isomerization in solution (1:1). ¹⁹F NMR (376 MHz, CD₂Cl₂) δ -60.05 (s, 3 F), -60.25 (s, 3 F); ³¹P NMR (162 MHz, CD₂Cl₂) δ 43.56 (s, 1 P), 34.05 (s, 1 P) ppm. Anal. Calcd. for C₄₂H₅₇F₃IO₂PPd: C, 55.12; H, 6.28; Found: C, 55.15; H, 6.27.

[(RuPhos)Pd(4-CF₃-Ph)(I)] 4c. Following the general procedure, a mixture containing RuPhos (1.0 g, 2.2 mmol), 4-iodobenzotrifluoride (1.63 g, 6.00 mmol), and [(COD)Pd(CH₂SiMe₃)₂] (0.78 g, 2.0 mmol) was stirred at room temperature in cyclohexane (4.0 mL) to afford complex 4c (1.52 g, 90%) as a bright yellow solid. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.64 (d, J = 8.4 Hz, 1 H), 7.61 (d, J = 5.6 Hz, 1 H), 7.45 (t, J = 7.5 Hz, 1 H), 7.38 (t, J = 7.5 Hz, 1 H), 7.25 (d, J = 7.8 Hz, 2 H), 7.14 (d, J = 8.1Hz, 2H), 6.85 (dd, J = 7.7, 2.0 Hz, 1 H), 6.68 (d, J = 8.4 Hz, 2 H), 4.60 (hept, J = 6.0Hz, 2 H), 2.16 – 2.09 (m, 2 H), 1.77 – 1.75 (m, 6 H), 1.67 – 1.64 (m, 4 H), 1.59 – 1.51 (m, 2 H), 1.39 (d, J = 6.0 Hz, 6 H), 1.24 – 1.16 (m, 4 H), 1.12 – 1.07 (m, 2 H), 1.02 (d, J = 6.1 Hz, 6 H), 0.72 – 0.66 (m, 2 H); ¹⁹F NMR (471 MHz, CD₂Cl₂) δ -62.03 (s); ³¹P NMR (202 MHz, CD₂Cl₂) δ 27.10 (s) ppm. Anal. Calcd. for C₃₇H₄₇F₃IO₂PPd: C, 52.59; H, 5.61; Found: C, 52.31; H, 5.62.

[(CPhos)Pd(4-CF₃-Ph)(I)] 4d. Following the general procedure, a mixture containing CPhos (0.44 g, 1.10 mmol), 4-iodobenzotrifluoride (1.36 g, 5.00 mmol), and [(COD)Pd(CH₂SiMe₃)₂] (0.39 g, 1.00 mmol) was stirred at room temp-erature in cyclohexane (7.0 mL) to afford complex 4d (0.48 g, 59%) as a light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (t, J = 7.1 Hz, 1 H), 7.56 (t, J = 8.1 Hz, 1 H), 7.43 (t, J = 7.5 Hz, 1 H), 7.35 – 7.28 (m, 3 H), 7.13 (d, J = 7.9 Hz, 2 H), 7.05 (d, J = 6.5 Hz, 1 H), 6.88 (d, J = 8.1 Hz, 2 H), 2.60 (s, 12 H), 2.35 – 2.27 (m, 2 H), 2.02 – 1.98 (m, 2 H), 1.73 – 1.64 (m, 8 H), 1.50 (t, J = 15.7 Hz, 2 H), 1.29 – 1.02 (m, 6 H), 0.87 – 0.84 (m, 2 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -61.87 (s); ³¹P NMR (162 MHz, CDCl₃) δ 26.63 (s) ppm. HRMS (ESI) calcd for [M-I]⁺ C₃₅H₄₅F₃N₂PPd: 687.2307, found: 687.2289.

General procedure for the synthesis of complex $[(L)Pd(Ar)(OCF_3)]$. In an argonfilled glovebox, an oven-dried scintillation vial (10 mL) equipped with a magnetic stir bar was charged with complex [(L)Pd(Ar)(I)] (0.2 mmol, 1.0 equiv.). Toluene was then added dropwise by syringes with stirring until palladium complex was fully dissolved. A solution of AgOCF₃ in acetonitrile (1.0 M, 0.24 mL, 0.24 mmol, 1.2 eq) was added dropwise. The suspension was stirred rapidly for another 3.0 min. The mixture was filtered through a 0.22 µm microfiltration membrane[®] to a 50 mL round-bottom flask. The orange solution was then layered with n-pentane (30 mL). The solution was stored in a freezer for 12 h, and the resulted solid was collected, washed with n-pentane (10 mL × 3), dried under vacuum and stored in a freezer.

[('Bu-BrettPhos)Pd(4-CF₃-Ph)(OCF₃)] 5a. Following the standard procedure, complex [('Bu-BrettPhos)Pd(4-CF₃-Ph)(I)] 4a (173 mg, 0.200 mmol, 1.00 equiv.) in toluene (5.0 mL) was reacted with a solution of AgOCF₃ in acetonitrile (1.0 M, 0.24 mL, 0.24 mmol) to afford complex 5a (64 mg, 39 %) as a bright yellow solid. ¹H NMR (600 MHz, C₆D₆) δ 7.58 (d, J = 7.0 Hz, 2 H), 7.40 (s, 2 H), 7.17 (d, J = 10.1 Hz, 2 H), 6.33 (d, J = 8.8 Hz, 1 H), 6.25 (d, J = 6.3 Hz, 1 H), 3.28 – 3.25 (m, 1 H), 3.02 (s, 3 H), 2.84 (s, 3 H), 2.68 (hept, J = 6.6 Hz, 1 H), 1.86 (d, J = 6.2 Hz, 6 H), 1.44 (d, J = 6.8 Hz, 6 H), 1.25 (s, 9 H), 1.22 (s, 9 H), 0.94 (d, J = 6.3 Hz, 6 H); ¹⁹F NMR (565 MHz, C₆D₆, **283 K**) δ -27.18 (s, 3 F), -61.29 (s, 3 F); ³¹P NMR (243 MHz, C₆D₆) δ 77.30 (s) ppm. Anal. Calcd. for C₃₉H₅₃F₆O₃PPd: C, 57.04; H, 6.51; Found: C, 57.20; H, 6.66.

[(BrettPhos)Pd(4-CF₃-Ph)(OCF₃)] 5b. Following the standard procedure, complex [(BrettPhos)Pd(4-CF₃-Ph)(I)] **4b** (183 mg, 0.200 mmol, 1.00 equiv.) in toluene (6.0 mL) was reacted with a solution of AgOCF₃ in acetonitrile (1.0 M, 0.24 mL, 0.24 mmol) to afford the desired complex **5b** (88 mg, 51 %) as a bright yellow solid. The desired complex was obtained as a mixture of two rotamers *O*-bound and *C*-bound in a ratio of 5:1. ¹H NMR (600 MHz, C₆D₆, majority) δ 7.59 (d, *J* = 7.7 Hz, 2 H), 7.47 (s, 2 H), 7.29 – 7.25 (m, 2 H), 6.33 (d, *J* = 8.9 Hz, 1 H), 6.28 (dd, *J* = 8.9, 3.1 Hz, 1 H), 3.11 (s, 3 H), 2.85 (s, 3 H), complex spectrum due to its isomerization in solution; ¹⁹F NMR (565 MHz, C₆D₆, 283 K) δ -28.01 (s, 3 F), -30.27 (s, 0.6 F), -61.32 (s, 3 F), -61.39 (s, 0.6 F); ³¹P NMR (243 MHz, C₆D₆) δ 51.38 (s, 0.2 P), 42.42 (s, 1 P) ppm. Anal. Calcd. for C₄₃H₅₇F₆O₃PPd•(n-pentane)_{0.23}: C, 59.59; H, 6.77; Found: C, 59.80; H, 6.83.

[(RuPhos)Pd(4-CF₃-Ph)(OCF₃)] 5c. Following the standard procedure, complex [(RuPhos)Pd(4-CF₃-Ph)(I)] 4c (169 mg, 0.200 mmol, 1.00 equiv.) in toluene (5.0 mL) was reacted with a solution of AgOCF₃ in acetonitrile (1.0 M, 0.24 mL, 0.24 mmol) to afford the desired complex 5c (71 mg, 44 %) as a white solid. ¹H NMR (600 MHz, C₆D₆) δ 7.73 (t, *J* = 8.5 Hz, 1 H), 7.53 (d, *J* = 7.4 Hz, 2 H), 7.25 (d, *J* = 5.5 Hz, 2 H), 7.18 (d, *J* = 7.6 Hz, 1 H), 7.07 (t, *J* = 7.5 Hz, 1 H), 6.94 (t, *J* = 7.6 Hz, 1 H), 6.70 (d, *J* = 7.6 Hz, 1 H), 6.57 (d, *J* = 5.2 Hz, 2 H), 4.30 – 4.26 (m, 2 H), 1.97 (q, *J* = 12.0 Hz, 2 H), 1.86 – 1.84 (m, 2 H), 1.61 – 1.54 (m, 6 H), 1.51 – 1.45 (m, 4 H), 1.32 (d, *J* = 5.5 Hz, 6 H), 1.10 – 1.03 (m, 2 H), 1.00 – 0.90 (m, 4 H), 0.80 (d, *J* = 6.1 Hz, 6 H), 0.77 –

0.70 (m, 2 H); ¹⁹F NMR (565 MHz, C₆D₆, **298K**) δ -27.52 (br, 3 F), -61.51 (s, 3 F); ¹⁹F NMR (565 MHz, C₆D₆, **283 K**) δ -27.41 (s, 3 F), -61.38 (s, 3 F); ³¹P NMR (243 MHz, C₆D₆) δ 37.98 (s) ppm. Anal. Calcd. for C₃₈H₄₇F₆O₃PPd•(Toluene)_{0.16}(n-pentane)_{0.4}: C, 58.33; H, 6.32; Found: C, 58.40; H, 6.44. The residual solvent was difficult to remove completely due to the week coordination.

[(CPhos)Pd(4-CF₃-Ph)(OCF₃)] 5d. Following the standard procedure, complex [(CPhos)Pd(4-CF₃-Ph)(I)] 4d (163 mg, 0.200 mmol, 1.00 equiv.) in toluene (3.0 mL) was reacted with a solution of AgOCF₃ in acetonitrile (1.0 M, 0.24 mL, 0.24 mmol) to afford the desired complex 5d (85 mg, 55 %) as a bright yellow solid. ¹H NMR (400 MHz, C₆D₆) δ 7.77 – 7.62 (m, 1 H), 7.53 (d, J = 5.5 Hz, 2 H), 7.28 – 7.23 (m, 3 H), 6.98 – 6.90 (m, 4 H), 6.85 – 6.80 (m, 1 H), 2.42 (s, 12 H), 2.16 – 2.09 (m, 2 H), 1.87 – 1.81 (m, 2 H), 1.64 – 1.61 (m, 2H), 1.57 – 1.40 (m, 6 H), 1.38 – 1.26 (m, 2H), 1.01 – 0.85 (m 6 H), 0.81 – 0.65 (m, 2 H); ¹⁹F NMR (376 MHz, C₆D₆) δ -27.57 (s, 3 F), -61.54 (s, 3 F); ³¹P NMR (162 MHz, C₆D₆) δ 34.73 (s) ppm. Anal. Calcd. for C₃₆H₄₅F₆N₂OPPd: C, 55.93; H, 5.87; N, 3.62; Found: C, 56.16; H, 5.99; N, 3.83.

Computational details. DFT calculations were performed using Gaussian 16.⁵ Geometry optimizations and frequencies were performed at the B3LYP-D3(BJ)⁶/6-31G(d,p)-LANL2DZ⁷(Pd) level of theory at 403.15 K. Frequency calculations confirmed that optimized structures are minima (no imaginary frequency) or transition structures (one imaginary frequency). To obtain more accurate electronic energies, single-point energy calculations were performed at the B97X-D⁸/6-311G(2d,p)-SDD⁹(Pd) level of theory with the optimized structures. The SMD¹⁰ model was used to account for the solvation effects of toluene when calculating the single-point energies.

B3LYP-D3(BJ)/6-31G(d,p)-LANL2DZ(Pd) calculated cartesian coordinates

int1.log

Pd	0.42764	0.18623	0.32692
0	0.96319	2.12965	0.87045
С	1.69041	2.91952	0.17067
F	3.04743	2.78137	0.32779
F	1.4926	2.82264	-1.20379
F	1.44717	4.2452	0.4653
С	2.4098	-0.10309	0.20584
С	3.02065	0.02138	-1.04609
С	3.211	-0.17813	1.34699
С	4.40967	0.00543	-1.16224
Н	2.42709	0.14825	-1.9429
С	4.60008	-0.19943	1.23531
Н	2.76561	-0.18928	2.33356
С	5.20231	-0.11916	-0.02125
Н	4.87551	0.10416	-2.13685
Н	5.21659	-0.25479	2.12632
С	6.69167	-0.22015	-0.14776
F	7.15856	0.43678	-1.23363
F	7.33172	0.27759	0.93457
F	7.09771	-1.51088	-0.27464
Р	-0.25147	-2.05562	0.06879
С	0.49808	-2.9061	-1.4774
С	0.03488	-3.12853	1.65006
С	0.35356	-1.88854	-2.62045
Н	-0.69088	-1.79001	-2.92415
Н	0.72206	-0.90252	-2.34554
Н	0.92195	-2.23925	-3.489

С	1.99326	-3.17689	-1.21661
Н	2.14831	-4.00044	-0.51917
Н	2.45947	-3.46497	-2.1657
Н	2.52071	-2.30284	-0.84438
С	-0.15805	-4.21252	-1.95237
Н	0.38852	-4.5477	-2.84214
Н	-0.10956	-5.00768	-1.2111
Н	-1.19949	-4.06383	-2.23939
С	1.27895	-2.56144	2.35031
Н	1.47249	-3.14439	3.25823
Н	2.16928	-2.6059	1.72162
Н	1.12372	-1.52081	2.63774
С	-1.16582	-2.9474	2.59237
Н	-2.0808	-3.37765	2.18462
Н	-0.9435	-3.45721	3.53681
Н	-1.33989	-1.89803	2.82311
С	0.25726	-4.63384	1.42529
Н	0.39635	-5.09844	2.40858
Н	-0.59468	-5.10705	0.94711
Н	1.15525	-4.84448	0.84521
С	-2.09544	-1.9379	-0.18782
С	-2.70514	-0.66802	-0.23637
С	-2.92293	-3.08564	-0.29717
С	-4.10776	-0.57422	-0.4349
С	-4.28758	-2.97093	-0.53471
С	-4.88261	-1.71318	-0.60977
Н	-4.90719	-3.85196	-0.6383
Н	-5.94924	-1.64346	-0.78044
С	-2.03543	0.66899	-0.04682

С	-1.78691	1.48526	-1.18956
С	-2.1142	1.29277	1.23411
С	-1.59965	2.85451	-1.02691
С	-1.91333	2.66651	1.33568
С	-1.67272	3.47155	0.22232
Н	-1.39203	3.45418	-1.90318
Н	-1.94741	3.13052	2.31661
0	-2.3212	-4.29607	-0.11162
0	-4.62328	0.69189	-0.43132
С	-3.06687	-5.47875	-0.3452
Н	-3.89852	-5.57683	0.36265
Н	-3.45523	-5.51061	-1.3702
Н	-2.3707	-6.30524	-0.1971
С	-6.01848	0.85208	-0.62253
Н	-6.20258	1.92549	-0.57507
Н	-6.33756	0.47234	-1.6016
Н	-6.5934	0.34888	0.16522
С	-1.79092	0.91174	-2.59595
Н	-1.78016	-0.17548	-2.50486
С	-0.55059	1.34162	-3.39741
Н	-0.46551	0.74832	-4.31374
Н	-0.61441	2.39372	-3.69182
Н	0.36318	1.2296	-2.81175
С	-3.07724	1.29548	-3.35025
Н	-3.15097	2.3828	-3.45654
Н	-3.07627	0.85699	-4.35408
Н	-3.96671	0.95106	-2.81949
С	-2.49411	0.51541	2.4827
Н	-2.6013	-0.53353	2.1995

С	-3.85998	0.97514	3.02152
Н	-4.1643	0.35932	3.87466
Н	-3.82147	2.01701	3.35535
Н	-4.62642	0.90111	2.24553
С	-1.4031	0.61294	3.56108
Н	-1.28076	1.64242	3.91018
Н	-1.65688	-0.00801	4.42716
Н	-0.43531	0.28925	3.1662
С	-1.53039	4.97336	0.40434
Н	-0.8129	5.11555	1.2206
С	-0.97971	5.70132	-0.82564
Н	-1.68658	5.66522	-1.66295
Н	-0.81044	6.75605	-0.58818
Н	-0.03058	5.26721	-1.14382
С	-2.88023	5.57978	0.83398
Н	-3.26828	5.10576	1.74045
Н	-2.77684	6.65246	1.02825
Н	-3.62739	5.44873	0.04296
Zero-point correction	n=		0.85630

Zero-point correction=	0.856360 (Hartree/Particle)
Thermal correction to Energy=	0.952254
Thermal correction to Enthalpy=	0.953530
Thermal correction to Gibbs Free Energy=	0.710302
SP-E = -2812.18609175 hartree	

int2.log

Pd	0.51435	0.43556	0.32675
С	2.49824	0.22246	0.19326
С	3.10589	0.42202	-1.05292
С	3.31486	0.11059	1.32261

С	4.49407	0.43977	-1.17944
Н	2.50203	0.56783	-1.94143
С	4.70419	0.12567	1.20381
Н	2.87709	0.02846	2.30961
С	5.29853	0.27851	-0.05005
Н	4.95172	0.58942	-2.15176
Н	5.32721	0.03499	2.08762
С	6.78757	0.21226	-0.19016
F	7.2355	0.93607	-1.24243
F	7.42661	0.66526	0.91336
F	7.22081	-1.06043	-0.38839
Р	-0.16823	-1.7978	0.05525
С	0.57819	-2.6107	-1.51171
С	0.13633	-2.90895	1.60337
С	0.40901	-1.57253	-2.63163
Н	-0.64224	-1.45914	-2.9058
Н	0.79314	-0.59686	-2.34071
Н	0.95309	-1.908	-3.52175
С	2.08187	-2.8469	-1.26814
Н	2.26664	-3.66522	-0.57136
Н	2.5458	-3.12298	-2.22207
Н	2.58895	-1.95777	-0.90059
С	-0.05621	-3.92014	-2.00624
Н	0.492	-4.2336	-2.90308
Н	0.00542	-4.72653	-1.27815
Н	-1.10106	-3.78313	-2.28716
С	1.38213	-2.34011	2.30158
Н	1.59066	-2.93309	3.19982
Н	2.26683	-2.36672	1.66331

Н	1.22074	-1.30382	2.60143
С	-1.05779	-2.76341	2.56009
Н	-1.96839	-3.20237	2.15139
Н	-0.81994	-3.28513	3.49437
Н	-1.24876	-1.72144	2.80918
С	0.37183	-4.4066	1.3453
Н	0.53283	-4.89076	2.31591
Н	-0.4839	-4.87859	0.87175
Н	1.26107	-4.59632	0.74452
С	-2.01581	-1.68706	-0.1968
С	-2.6298	-0.41737	-0.22484
С	-2.84029	-2.83448	-0.32138
С	-4.03325	-0.32433	-0.40839
С	-4.20739	-2.71998	-0.54662
С	-4.8067	-1.46271	-0.59469
Н	-4.82547	-3.60076	-0.66157
Н	-5.87516	-1.3937	-0.75399
С	-1.94665	0.90982	-0.01974
С	-1.68815	1.74975	-1.14761
С	-1.95349	1.49096	1.28091
С	-1.37618	3.08557	-0.94042
С	-1.62827	2.84071	1.42677
С	-1.31177	3.64608	0.33963
Н	-1.14535	3.7083	-1.79791
Н	-1.591	3.27058	2.42279
0	-2.23179	-4.04619	-0.16551
0	-4.55288	0.9409	-0.37593
С	-2.97595	-5.22648	-0.41276
Н	-3.80019	-5.3405	0.30155

Н	-3.37513	-5.24123	-1.4341
Н	-2.27574	-6.05331	-0.28711
С	-5.95211	1.09679	-0.5388
Н	-6.1418	2.16795	-0.46692
Н	-6.28719	0.73463	-1.51926
Н	-6.50977	0.57451	0.24896
С	-1.77574	1.22507	-2.57101
Н	-1.80993	0.13511	-2.5167
С	-0.55059	1.62623	-3.40997
Н	-0.52525	1.05957	-4.34646
Н	-0.57899	2.68884	-3.6708
Н	0.3793	1.4481	-2.8656
С	-3.06976	1.69477	-3.26045
Н	-3.09309	2.78775	-3.32633
Н	-3.12989	1.29298	-4.27786
Н	-3.95273	1.37569	-2.70457
С	-2.37584	0.7055	2.51088
Н	-2.51905	-0.33372	2.2083
С	-3.7298	1.21164	3.0389
Н	-4.0671	0.60061	3.88316
Н	-3.65284	2.24858	3.38182
Н	-4.48944	1.17459	2.25387
С	-1.29916	0.74125	3.60714
Н	-1.16322	1.75315	4.00006
Н	-1.57756	0.09298	4.44503
Н	-0.33309	0.41346	3.21196
С	-0.89237	5.08856	0.53237
Н	-0.86327	5.27383	1.61359
С	0.52361	5.32214	-0.02334

S20

Н	0.52507	5.26129	-1.11767
Н	0.88494	6.31829	0.25433
Н	1.20285	4.55429	0.35105
С	-1.91218	6.0595	-0.08599
Н	-2.91029	5.91568	0.34039
Н	-1.61067	7.09793	0.08749
Н	-1.98647	5.91188	-1.16901
F	1.08606	2.31504	0.61944
Zero-point correction	on=		0.839244 (Hartree/Particle)
Thermal correction to Energy=		0.929162	
Thermal correction to Enthalpy=		0.930438	
Thermal correction to Gibbs Free Energy=		0.700025	
SP-E = -2499.13354140 hartree			

COF2.log

С	0.	0.14302	0.	
0	-0.00007	1.32317	0.	
F	-1.06862	-0.6358	0.	
F	1.06868	-0.63569	0.	
Zero-point correct	ion=			0.014136 (Hartree/Particle)
Thermal correction	n to Energy=			0.019161
Thermal correction	n to Enthalpy	=		0.020437
Thermal correction	n to Gibbs Fre	ee Energy=		-0.022606
SP-E = -313.02290	09842 hartree	•		

LnPd.log

Pd	0.48751	-1.7759	0.38634
Р	-1.58978	-0.99916	-0.23316
С	-2.0146	-1.29514	-2.06705

S21

С	-2.97196	-1.6795	0.92639
С	-0.7974	-0.74957	-2.83022
Н	-0.7159	0.3339	-2.7159
Н	0.12935	-1.20019	-2.46397
Н	-0.90083	-0.97063	-3.89953
С	-2.07549	-2.81932	-2.27348
Н	-2.95036	-3.26909	-1.79735
Н	-2.13452	-3.03869	-3.34634
Н	-1.18002	-3.30291	-1.8709
С	-3.27518	-0.63464	-2.6429
Н	-3.35861	-0.90548	-3.7034
Н	-4.18767	-0.95668	-2.14243
Н	-3.2175	0.45306	-2.58016
С	-2.48357	-3.0863	1.33922
Н	-3.19614	-3.52013	2.05229
Н	-2.41196	-3.75956	0.48086
Н	-1.49495	-3.04221	1.80361
С	-3.01189	-0.79979	2.18697
Н	-3.43606	0.18412	1.9831
Н	-3.63421	-1.28782	2.94693
Н	-2.01377	-0.66855	2.6122
С	-4.38848	-1.83989	0.35382
Н	-5.0334	-2.269	1.13111
Н	-4.8169	-0.8919	0.04405
Н	-4.41028	-2.52866	-0.49398
С	-1.50071	0.88176	-0.04981
С	-0.25513	1.53768	0.16777
С	-2.66902	1.68364	-0.07441
С	-0.24008	2.93073	0.41996

С	-2.62107	3.05999	0.1233
С	-1.40542	3.68593	0.38306
Н	-3.52296	3.65737	0.09618
Н	-1.38888	4.75378	0.55885
С	1.07841	0.84195	0.1666
С	1.96429	0.93991	-0.91796
С	1.4271	0.03669	1.30989
С	3.14168	0.1625	-0.91612
С	2.59616	-0.76318	1.23626
С	3.44709	-0.72027	0.11092
Н	3.80954	0.23188	-1.76765
Н	2.90981	-1.32775	2.10862
0	-3.85402	1.03395	-0.28687
0	0.98539	3.47075	0.71801
С	-5.03546	1.79723	-0.44266
Н	-5.28705	2.34841	0.47213
Н	-4.95076	2.5033	-1.278
Н	-5.8294	1.08024	-0.65689
С	1.04912	4.8521	1.02469
Н	2.09563	5.05943	1.25124
Н	0.73484	5.47084	0.17425
Н	0.43265	5.09998	1.89821
С	1.72262	1.86421	-2.10683
Н	0.67747	2.18975	-2.07482
С	1.96944	1.19083	-3.46956
Н	1.62181	1.8428	-4.27823
Н	3.03706	1.01452	-3.63601
Н	1.45738	0.23261	-3.55741
С	2.61497	3.11741	-2.00591

Н	3.67143	2.83434	-2.07126
Н	2.40255	3.81108	-2.82767
Н	2.461	3.63206	-1.05849
С	0.77567	0.30748	2.66629
Н	-0.24362	0.65472	2.47534
С	1.53525	1.44724	3.37254
Н	1.04116	1.71658	4.31293
Н	2.55902	1.13343	3.6054
Н	1.58988	2.33283	2.73664
С	0.68651	-0.92073	3.57972
Н	1.67728	-1.26474	3.89501
Н	0.12461	-0.67565	4.48741
Н	0.18624	-1.74964	3.06896
С	4.64884	-1.64503	0.03846
Н	4.77164	-2.09637	1.03197
С	4.38614	-2.78696	-0.96048
Н	4.25223	-2.38894	-1.97204
Н	5.22233	-3.49496	-0.98027
Н	3.47476	-3.33136	-0.69363
С	5.95083	-0.90352	-0.30078
Н	6.1407	-0.09327	0.40958
Н	6.80365	-1.59035	-0.27612
Н	5.91018	-0.46598	-1.30367
Zero-point correction	=		0.738946 (Hartree/Particle)
Thermal correction to	Energy=		0.811364
Thermal correction to	Enthalpy=	=	0.812640
Thermal correction to	Gibbs Fre	ee Energy=	0.622209
SP-E = -1830.565750	62 hartree		

phf.log

С	-2.39643	0.	0.00371
С	-1.73038	-1.21976	-0.00567
С	-0.33819	-1.21384	-0.02464
С	0.35541	-0.00003	-0.03671
С	-0.33817	1.21381	-0.02464
С	-1.73036	1.21976	-0.00567
Н	-2.29459	-2.14529	-0.00129
Н	0.20469	-2.152	-0.0355
Н	0.20474	2.15196	-0.03552
Н	-2.29454	2.1453	-0.00129
С	1.85325	-0.00001	-0.00147
F	2.33542	0.00038	1.26862
F	2.37975	1.08895	-0.6087
F	2.37979	-1.0893	-0.60807
F	-3.74731	0.00002	0.01972
Zero-point correctio	n=		0.097033 (Hartree/Particle)
Thermal correction t	to Energy=		0.110097
Thermal correction t	to Enthalpy	=	0.111279
Thermal correction t	to Gibbs Fre	ee Energy=	0.049558
SP-E = -668.533149	047 hartree	;	

TS1.log

Pd	-0.30921	-0.45829	0.51118
Р	-0.31623	1.86687	0.22934
С	-1.45753	2.39063	-1.21386
С	-0.78673	2.83053	1.83541
С	-1.11081	1.44341	-2.37284
Н	-0.09487	1.6152	-2.73585

Н	-1.20322	0.39984	-2.07447
Н	-1.80026	1.62525	-3.20541
С	-2.90401	2.10829	-0.76451
Н	-3.27984	2.86339	-0.07279
Н	-3.56318	2.11401	-1.63887
Н	-3.00027	1.1344	-0.29303
С	-1.35512	3.82868	-1.7416
Н	-2.09842	3.94573	-2.54005
Н	-1.56179	4.5778	-0.97946
Н	-0.37186	4.03194	-2.16904
С	-1.73865	1.90567	2.61687
Н	-2.00834	2.38685	3.56482
Н	-2.65868	1.70166	2.06676
Н	-1.26511	0.94584	2.83479
С	0.4819	3.03934	2.67668
Н	1.18518	3.72166	2.19699
Н	0.19532	3.47242	3.64222
Н	0.9893	2.0974	2.88009
С	-1.48347	4.19004	1.65863
Н	-1.70232	4.58991	2.6563
Н	-0.8526	4.90555	1.13935
Н	-2.43472	4.10875	1.13275
С	1.44257	2.32411	-0.21188
С	2.42431	1.31328	-0.33541
С	1.84841	3.67245	-0.38047
С	3.7641	1.67684	-0.63088
С	3.15691	4.0026	-0.71485
С	4.11871	3.00292	-0.84119
Н	3.44992	5.03447	-0.85788

Н	5.13669	3.27821	-1.08523
С	2.23188	-0.17196	-0.15239
С	2.14298	-1.01554	-1.29146
С	2.48128	-0.75881	1.11745
С	2.29687	-2.39462	-1.13839
С	2.60337	-2.14858	1.21616
С	2.54092	-2.98533	0.10225
Н	2.22811	-3.02202	-2.01847
Н	2.78742	-2.59074	2.19119
0	0.89757	4.62643	-0.16049
0	4.66308	0.64445	-0.68286
С	1.20204	5.97994	-0.44709
Н	1.99671	6.36227	0.20513
Н	1.49804	6.11043	-1.49502
Н	0.28438	6.53892	-0.25953
С	6.01923	0.94886	-0.95869
Н	6.54779	-0.00455	-0.9375
Н	6.13737	1.40619	-1.94954
Н	6.44493	1.61772	-0.19982
С	1.94739	-0.45568	-2.69179
Н	1.65747	0.59257	-2.58957
С	0.83205	-1.18712	-3.45668
Н	0.58358	-0.64897	-4.37718
Н	1.14018	-2.19828	-3.74064
Н	-0.07199	-1.27509	-2.85144
С	3.25987	-0.49559	-3.49591
Н	3.59924	-1.52885	-3.62618
Н	3.11471	-0.0599	-4.49048
Н	4.05224	0.05317	-2.98435

С	2.7366	0.08576	2.35544
Н	2.51473	1.12285	2.0969
С	4.2233	0.02598	2.74941
Н	4.42696	0.69522	3.59236
Н	4.50794	-0.98874	3.04727
Н	4.85732	0.31757	1.90831
С	1.83124	-0.31648	3.52938
Н	2.05003	-1.3315	3.87516
Н	1.97537	0.3607	4.37809
Н	0.77821	-0.28801	3.23277
С	2.81352	-4.47202	0.26988
Н	2.30641	-4.78504	1.19011
С	2.28203	-5.34309	-0.87326
Н	2.82457	-5.15361	-1.80641
Н	2.41719	-6.40158	-0.63034
Н	1.22044	-5.16358	-1.04977
С	4.32571	-4.69918	0.46246
Н	4.71187	-4.12314	1.3087
Н	4.54121	-5.75822	0.64083
Н	4.8749	-4.38587	-0.43254
С	-2.26673	-1.2593	0.46792
С	-2.74458	-1.4662	-0.84509
С	-4.06479	-1.15862	-1.14454
С	-4.94092	-0.71055	-0.15153
С	-4.48683	-0.6222	1.17387
С	-3.17656	-0.93305	1.49588
Н	-2.07984	-1.82724	-1.61766
Н	-4.41598	-1.25862	-2.16616
Н	-5.17219	-0.31144	1.95543

Н	-2.83021	-0.88879	2.52063	
С	-6.29786	-0.21842	-0.51815	
F	-6.28158	1.10456	-0.85386	
F	-7.18485	-0.33722	0.49771	
F	-6.81369	-0.86916	-1.58761	
0	-1.14108	-2.42771	1.06852	
С	-1.05507	-3.57942	0.41665	
F	-0.55658	-3.45774	-0.85016	
F	-2.24461	-4.20631	0.2943	
F	-0.22812	-4.4193	1.0808	
Zero-point correction	n=		0.854155 (Hartree/Particle)	
Thermal correction t	to Energy=		0.949563	
Thermal correction to Enthalpy=		0.950839		
Thermal correction t	o Gibbs Fr	ee Energy=	= 0.709177	
SP-E = -2812.13102	136 hartree	e		

TS2.log

Pd	-0.42946	0.18716	-0.29143
0	-1.03181	1.46198	-2.29093
С	-1.53051	2.47431	-1.76274
F	-2.88143	2.67239	-1.89863
F	-1.37571	2.43629	-0.28259
F	-0.96945	3.70099	-2.0706
С	-2.36926	-0.22002	-0.01646
С	-2.85836	-0.19016	1.29272
С	-3.26811	-0.24149	-1.08482
С	-4.23162	-0.22403	1.53663
Н	-2.18657	-0.14312	2.1392
С	-4.64021	-0.28668	-0.84092

Н	-2.91127	-0.16367	-2.10102
С	-5.12511	-0.28844	0.46775
Н	-4.60326	-0.19777	2.55538
Н	-5.3349	-0.29355	-1.67402
С	-6.59613	-0.41562	0.72648
F	-6.96279	0.18021	1.8844
F	-7.33788	0.12824	-0.26328
F	-6.97539	-1.71589	0.82507
Р	0.34153	-1.99846	-0.18917
С	-0.31862	-3.10474	1.22911
С	0.09393	-2.83234	-1.91128
С	-0.16623	-2.27035	2.51077
Н	0.88756	-2.15619	2.77701
Н	-0.60077	-1.27927	2.40925
Н	-0.66806	-2.78449	3.33796
С	-1.80742	-3.40571	0.97069
Н	-1.94856	-4.08524	0.12914
Н	-2.21798	-3.89836	1.85937
Н	-2.39149	-2.50785	0.78957
С	0.41116	-4.43713	1.47202
Н	-0.09798	-4.93927	2.30336
Н	0.38417	-5.10308	0.61214
Н	1.44962	-4.28346	1.76623
С	-1.20297	-2.26164	-2.50788
Н	-1.36211	-2.71679	-3.49231
Н	-2.07561	-2.48314	-1.89098
Н	-1.13631	-1.18035	-2.63675
С	1.25652	-2.40182	-2.81844
Н	2.21914	-2.77876	-2.47056

Н	1.07776	-2.8033	-3.82235
Н	1.30409	-1.31747	-2.90868
С	-0.01182	-4.36622	-1.91311
Н	-0.15265	-4.68574	-2.95211
Н	0.88649	-4.84274	-1.53328
Н	-0.87351	-4.72719	-1.35063
С	2.16951	-1.79564	0.13029
С	2.69479	-0.52225	0.43572
С	3.05838	-2.90103	0.10222
С	4.05987	-0.40372	0.80214
С	4.38519	-2.76778	0.49543
С	4.88465	-1.51984	0.86105
Н	5.04964	-3.62179	0.49949
Н	5.92321	-1.43256	1.15315
С	1.97356	0.7929	0.2992
С	1.56834	1.51521	1.4649
С	2.084	1.48909	-0.94007
С	1.23963	2.85911	1.34936
С	1.72245	2.84106	-0.99461
С	1.30499	3.54325	0.12823
Н	0.91962	3.39583	2.23567
Н	1.76515	3.3562	-1.94665
0	2.55675	-4.07893	-0.36814
0	4.49679	0.86563	1.06096
С	3.35689	-5.24697	-0.29085
Н	4.2552	-5.16	-0.91312
Н	3.64886	-5.46386	0.74371
Н	2.73619	-6.06023	-0.66882
С	5.8676	1.05714	1.36915

Н	5.99245	2.131	1.50877
Н	6.15053	0.53622	2.29268
Н	6.51369	0.71867	0.54941
С	1.52673	0.86336	2.83799
Н	1.64301	-0.21258	2.69435
С	0.18609	1.11079	3.54922
Н	0.09254	0.46604	4.42922
Н	0.10328	2.14723	3.891
Н	-0.65732	0.92317	2.88269
С	2.68762	1.34265	3.72867
Н	2.62339	2.42337	3.89384
Н	2.64652	0.84953	4.70599
Н	3.65293	1.1315	3.26791
С	2.73007	0.86059	-2.16666
Н	2.75602	-0.21927	-2.01311
С	4.19147	1.33523	-2.29056
Н	4.675	0.85215	-3.14644
Н	4.22872	2.41832	-2.4474
Н	4.76609	1.1087	-1.39058
С	1.96354	1.1455	-3.46793
Н	2.0844	2.18895	-3.7766
Н	2.36125	0.52262	-4.2765
Н	0.89271	0.96903	-3.35321
С	0.97819	5.02101	0.03656
Н	0.87634	5.25842	-1.02751
С	-0.34952	5.38115	0.71898
Н	-0.29858	5.22884	1.80293
Н	-0.58397	6.43703	0.54878
Н	-1.16046	4.77	0.32323

С	2.14228	5.85128	0.60778
Н	3.08086	5.62823	0.09037
Н	1.93978	6.92285	0.50699
Н	2.28771	5.63515	1.67235
Zero-point correction	=		0.855131 (Hartree/Particle)
Thermal correction to	Energy=		0.950603
Thermal correction to	Enthalpy=	:	0.951879
Thermal correction to	Gibbs Free	e Energy=	0.710264
SP-E = -2812.167667	48 hartree		

TS3.log

Pd	-0.35734	-0.6131	0.69834
Р	-0.09747	1.64511	0.22105
С	-1.21938	2.21698	-1.2161
С	-0.38748	2.7374	1.78309
С	-1.00863	1.18306	-2.33138
Н	0.01198	1.21813	-2.71897
Н	-1.21649	0.17471	-1.97645
Н	-1.69148	1.40189	-3.16037
С	-2.67563	2.11267	-0.72191
Н	-2.93626	2.91231	-0.02637
Н	-3.35211	2.19361	-1.57954
Н	-2.87561	1.15918	-0.23942
С	-0.97519	3.60958	-1.81469
Н	-1.72453	3.77244	-2.59915
Н	-1.07497	4.41094	-1.08483
Н	0.01153	3.68263	-2.27468
С	-1.42265	1.98106	2.63802
Н	-1.60456	2.54448	3.56118

Н	-2.37555	1.8618	2.11934
Н	-1.06506	0.98283	2.90029
С	0.92909	2.81947	2.57157
Н	1.68416	3.40616	2.0461
Н	0.73309	3.30438	3.53506
Н	1.33707	1.83064	2.77978
С	-0.9156	4.16292	1.55313
Н	-1.04547	4.63842	2.53297
Н	-0.22179	4.76586	0.97453
Н	-1.88941	4.17343	1.06222
С	1.693	1.85303	-0.29486
С	2.54089	0.72291	-0.38717
С	2.25865	3.13018	-0.53768
С	3.90931	0.90154	-0.70901
С	3.59342	3.27815	-0.89941
С	4.42314	2.16241	-0.9835
Н	4.00937	4.25756	-1.09641
Н	5.46397	2.29794	-1.24789
С	2.13321	-0.70808	-0.14979
С	1.81732	-1.55129	-1.25328
С	2.27421	-1.28028	1.14167
С	1.56308	-2.90095	-1.02096
С	2.00978	-2.64851	1.31411
С	1.62761	-3.46784	0.25764
Н	1.29503	-3.53328	-1.86026
Н	2.08471	-3.07778	2.30823
0	1.43518	4.20404	-0.36226
0	4.67061	-0.23787	-0.71985
С	1.90271	5.49474	-0.71278

Н	2.74483	5.80446	-0.08194
Н	2.20264	5.53924	-1.76671
Н	1.06322	6.17131	-0.54806
С	6.05138	-0.11739	-1.01781
Н	6.45811	-1.1271	-0.9559
Н	6.21293	0.27664	-2.02938
Н	6.56471	0.52686	-0.29285
С	1.79629	-1.03251	-2.68407
Н	1.70795	0.0561	-2.63985
С	0.61484	-1.57701	-3.50337
Н	0.52635	-1.03063	-4.44779
Н	0.75607	-2.63336	-3.75325
Н	-0.32937	-1.48423	-2.96419
С	3.11893	-1.36272	-3.4028
Н	3.25052	-2.44798	-3.47349
Н	3.11497	-0.95512	-4.41965
Н	3.97537	-0.95795	-2.86321
С	2.78638	-0.47551	2.32755
Н	2.77879	0.57838	2.03872
С	4.24582	-0.85485	2.63834
Н	4.64219	-0.23256	3.44806
Н	4.31478	-1.90198	2.95211
Н	4.87529	-0.7265	1.75493
С	1.90084	-0.63236	3.57346
Н	1.94482	-1.65035	3.97258
Н	2.23161	0.04675	4.36635
Н	0.85453	-0.41519	3.33865
С	1.27944	-4.92683	0.47882
Н	1.32088	-5.10755	1.5604

С	-0.15359	-5.23062	0.00717	
Н	-0.2306	-5.15057	-1.0833	
Н	-0.44079	-6.25076	0.28345	
Н	-0.85819	-4.52201	0.44737	
С	2.30259	-5.85622	-0.1957	
Н	3.3162	-5.66414	0.17018	
Н	2.05945	-6.90614	-0.00115	
Н	2.30589	-5.71077	-1.28159	
С	-2.33839	-1.17752	0.64252	
С	-2.78161	-1.53022	-0.6501	
С	-4.08402	-1.2412	-1.02877	
С	-4.9825	-0.67105	-0.1172	
С	-4.56658	-0.44088	1.20143	
С	-3.26586	-0.72061	1.59789	
Н	-2.09005	-1.99285	-1.34488	
Н	-4.41129	-1.45893	-2.04026	
Н	-5.26946	-0.03172	1.91983	
Н	-2.94851	-0.54164	2.61735	
С	-6.32226	-0.21396	-0.57784	
F	-6.28234	1.05129	-1.08866	
F	-7.23451	-0.18515	0.423	
F	-6.82643	-0.99604	-1.56329	
F	-1.34376	-2.4443	1.26029	
Zero-point correction	on=		0.837414 (Hartree/Particl	le)
Thermal correction	to Energy=		0.926622	
Thermal correction	to Enthalpy	_	0.927898	
Thermal correction	to Gibbs Fre	ee Energy=	= 0.700553	
SP-E = -2499.09196	5060 hartree			

Reference

- 1. de Graaf, W.; Boersma, J.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. Organometallics 1989, 8, 2907
- 2. Ball. N. D.; Gary, J. B.; Ye, Y. D.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 7577.

3. Maleckis. A.; Sanford, M. S. Organometallics 2011, 30, 6617.

Vinogradova, E.; Zhang, C.; Spokoyny, A.; Pentelute1, B. L.; Buchwald, S. L. *Nature* 2015, *526*, 687.

5. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F. Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; and Fox, D. J. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016. 6. (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785–789; (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652; (c) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377; (d) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg. H. J. Chem. Phys. 2010, 132, 154104; (e) Grimme, S.; Ehrlich S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456. 7. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. 8. Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620. 9. Andrae, D.; Häuß ermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theoretica chimica acta.

1990, *77*, 123.

10. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B. 2009, 113, 6378.

¹⁹F NMR spectrum (376 MHz, CDCl₃) of [(TMEDA)Pd(4-CF₃Ph)(I)] 1a

¹H NMR spectrum (400 MHz, CDCl₃) of [*cis*-(4-MePy)₂Pd(4-CF₃Ph)(I)] 1b

¹⁹F NMR spectrum (376 MHz, CDCl₃) of [cis-(4-MePy)₂Pd(4-CF₃Ph)(I)] 1b

¹H NMR spectrum (400 MHz, THF-d₈) of [(TMEDA)Pd(4-CF₃Ph)(OCF₃)] 2a

¹⁹F NMR spectrum (376 MHz, THF-d₈) of [(TMEDA)Pd(4-CF₃Ph)(OCF₃)] 2a

¹⁹F NMR spectrum (400 MHz, THF-*d*₈) of [*trans*-(4-MePy)₂Pd(4-CF₃Ph)(OCF₃)] 2b

¹⁹F NMR spectrum (376 MHz, unlocked) of 4-(trifluoromethyl)benzoyl fluoride 2c in solution.

-18.81

GC-MS of 4-(trifluoromethyl)benzoyl fluoride 2c.

¹⁹F NMR spectrum (400 MHz, CD₂Cl₂) of [(DPPF)Pd(4-CH₃-Py)(4-CF₃-Ph)][OTf] 3c

¹H NMR spectrum (400 MHz, CD₂Cl₂) of [('Bu-BrettPhos)Pd(4-CF₃Ph)(I)] 4a

¹⁹F NMR spectrum (376 MHz, CD₂Cl₂) of [('Bu-BrettPhos)Pd(4-CF₃Ph)(I)] 4a

³¹P NMR spectrum (162 MHz, CD₂Cl₂) of [('Bu-BrettPhos)Pd(4-CF₃Ph)(I)] 4a

¹⁹F NMR spectrum (376 MHz, CD₂Cl₂) of [(BrettPhos)Pd(4-CF₃Ph)(I)] 4b

³¹P NMR spectrum (202 MHz, CD₂Cl₂) of [(RuPhos)Pd(4-CF₃Ph)(I)] 4c

¹⁹F NMR spectrum (376 MHz, CDCl₃) of [(CPhos)Pd(4-CF₃Ph)(I)] 4d

³¹P NMR spectrum (162 MHz, CDCl₃) of [(CPhos)Pd(4-CF₃Ph)(I)] 4d

¹H NMR spectrum (600 MHz, C₆D₆) of [('Bu-BrettPhos)Pd(4-CF₃Ph)(OCF₃)] 5a

¹⁹F NMR spectrum (600 MHz, C₆D₆, 283 K) of [(^{*t*}-Bu-BrettPhos)Pd(4-CF₃Ph)(OCF₃)] 5a

¹H NMR spectrum (600 MHz, C₆D₆) of [(BrettPhos)Pd(4-CF₃Ph)(OCF₃)] 5b 7.597.577.477.477.477.166.333.106.233.113.113.111.871.871.881.1881.1881.1881.1881.1801.19 $\begin{array}{c} -1.12\\ -1.11\\ -1.105\\ -1.03\\ -1.00\\ -1.00\\ -0.98\\ -0.97\\ -0.86\\ 0.86\end{array}$ 1.13 Су 1 1 1 1 , 111 Cy--OCF₃ MeO ġ. *i*Pr ОMe 7.27 7.26 7.16 6.34 6.33 6.29 6.28 7.59 7.58 7.47 7.8 7.4 7.0 6.6 6.2 15.45 1 62 0.39 2.14 2.06 2.34 0.41 1.21 1.27 2.47 2.49 2.49 2.49 6.25 6.25 6.25 2.65 2.65 2.65 2.65 2.70 2.47 2.47 3 6 5 2 -3 6 15 14 13 12 11 10 9 8 7 4 1 0 -1 -2

¹⁹F NMR spectrum (565 MHz, C₆D₆, 283 K) of [(BrettPhos)Pd(4-CF₃Ph)(OCF₃)] 5b

¹⁹F NMR spectrum (565 MHz, C₆D₆, 283 K) of [(RuPhos)Pd(4-CF₃Ph)(OCF₃)] 5c

¹H NMR spectrum (400 MHz, C₆D₆) of [(CPhos)Pd(4-CF₃Ph)(OCF₃)] 5d 7.69 7.54 7.52 7.28 7.26 6.986.966.936.936.936.936.936.936.926.926.921.1451.1451.1451.1451.1451.1341.1341.1341.1341.1341.1341.1341.1361.1341.1367.16 ¹.34 0.97 0.95 0.91 0.88 1.46 1.45 2.14 1.51 2.11 11/1 11/1 2.2 1.8 1.4 1.0 0.6 OCF 7.16 6.98 7.28 7.26 6.95 6.93 6.90 6.82 7.54 7.52 Me₂N 7.7 7.5 7.3 7.1 6.9 6.7 12.00₁ .28 .15 .28 .28 2.19 6.20 2.18 03 08 08 08 13 Ċ rini m 3 2 .4 13 12 11 10 9 8 7 6 5 4 1 0 -1

³¹P NMR spectrum (162 MHz, C₆D₆) of [(CPhos)Pd(4-CF₃Ph)(OCF₃)] 5d

X-ray diffraction data of complexes 2a, 2b, 3b', 3c, 5a

Figure S3. ORTEP diagrams of [(TMEDA)Pd(4-CF₃Ph)(OCF₃)] 2a.

Identification code	mo_d8v191192_0m
Empirical formula	C14 H20 F6 N2 O Pd
Formula weight	452.72
Temperature	193(2) K
Wavelength	0.71073 Å
Crystal system	Tetragonal
Space group	I 41 c d
Unit cell dimensions	$a = 22.1489(5) \text{ Å}$ $\alpha = 90^{\circ}.$
	$b = 22.1489(5) \text{ Å} \qquad \beta = 90^{\circ}.$
	$c = 14.1421(3) \text{ Å}$ $\gamma = 90^{\circ}.$
Volume	6937.7(3) Å ³
Ζ	16
Density (calculated)	1.734 Mg/m ³
Absorption coefficient	1.133 mm ⁻¹
F(000)	3616
Crystal size	0.180 x 0.150 x 0.110 mm ³
Theta range for data collection	2.510 to 25.996°.
Index ranges	-27<=h<=23, -22<=k<=27, -17<=l<=17
Reflections collected	16497
Independent reflections	3401 [R(int) = 0.0249]
Completeness to theta = 25.242°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5885
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3401 / 111 / 293
Goodness-of-fit on F ²	1.054
Final R indices [I>2sigma(I)]	R1 = 0.0178, wR2 = 0.0416
R indices (all data)	R1 = 0.0193, $wR2 = 0.0424$
Absolute structure parameter	-0.028(10)
Extinction coefficient	n/a
Largest diff. peak and hole	0.213 and -0.327 e.Å ⁻³

 Table S1-1.
 Crystal data and structure refinement for 2a.

Figure S4. ORTEP diagrams of [*trans*-(4-CH₃-py)₂Pd(4-CF₃Ph)(OCF₃)] 2b.

-		
Identification code	mj20037_0m	
Empirical formula	C20 H18 F6 N2 O Pd	
Formula weight	522.76	
Temperature	170.0 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 13.1935(5) Å	α= 90°.
	b = 11.4522(5) Å	β= 105.432(3)°.
	c = 14.0786(6) Å	$\gamma = 90^{\circ}$.
Volume	2050.51(15) Å ³	
Ζ	4	
Density (calculated)	1.693 Mg/m ³	
Absorption coefficient	5.273 mm ⁻¹	
F(000)	1040	
Crystal size	0.05 x 0.03 x 0.02 mm ³	
Theta range for data collection	3.551 to 54.995°.	
Index ranges	-16<=h<=16, -13<=k<=11, -17	7<=1<=17
Reflections collected	20044	
Independent reflections	3867 [R(int) = 0.1270]	
Completeness to theta = 53.594°	99.1 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	0.7508 and 0.4564	
Refinement method	Full-matrix least-squares on F ²	1
Data / restraints / parameters	3867 / 31 / 273	
Goodness-of-fit on F ²	1.059	
Final R indices [I>2sigma(I)]	R1 = 0.0908, wR2 = 0.2048	
R indices (all data)	R1 = 0.1456, wR2 = 0.2376	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.705 and -1.624 e.Å ⁻³	

 Table S2-1. Crystal data and structure refinement for 2b.

Figure S5. ORTEP diagrams of [(DPPF)Pd(4-CF₃Ph)(4-MePy)•(4-MePy)] 3b'.

-		
Identification code	mj19744_0m	
Empirical formula	C106 H92 F6 Fe2 N4 P4 Pd2	
Formula weight	1984.21	
Temperature	169.96 K	
Wavelength	1.34139 Å	
Crystal system	Monoclinic	
Space group	P 1 21/c 1	
Unit cell dimensions	a = 10.3574(2) Å	<i>α</i> = 90°.
	b = 17.7893(3) Å	β= 95.5760(10)°.
	c = 27.4578(5) Å	$\gamma = 90^{\circ}$.
Volume	5035.19(16) Å ³	
Ζ	2	
Density (calculated)	1.309 Mg/m ³	
Absorption coefficient	4.116 mm ⁻¹	
F(000)	2028	
Crystal size	0.08 x 0.06 x 0.05 mm ³	
Theta range for data collection	3.548 to 54.976°.	
Index ranges	-12<=h<=12, -21<=k<=21, -33	i<=l<=32
Reflections collected	65324	
Independent reflections	9569 [R(int) = 0.0553]	
Completeness to theta = 53.594°	99.9 %	
Absorption correction	Semi-empirical from equivaler	its
Max. and min. transmission	0.7508 and 0.4841	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9569 / 0 / 561	
Goodness-of-fit on F ²	1.018	
Final R indices [I>2sigma(I)]	R1 = 0.0420, wR2 = 0.1032	
R indices (all data)	R1 = 0.0553, wR2 = 0.1105	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.524 and -0.741 e.Å ⁻³	

Table S3-1. Crystal data and structure refinement for 3b'.

Figure S6. ORTEP diagrams of [(DPPF)Pd(4-CH₃-Py)(4-CF₃-Ph)][OTf] 3c.

Identification code	mj22132	
Empirical formula	C48 H39 F6 Fe N O3 P2 Pd S	
Formula weight	1048.05	
Temperature	213.0 K	
Wavelength	1.34139 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 21.6907(5) Å	α= 90°.
	b = 17.7028(4) Å	β= 90°.
	c = 22.6847(5) Å	$\gamma = 90^{\circ}$.
Volume	8710.6(3) Å ³	
Ζ	8	
Density (calculated)	1.598 Mg/m ³	
Absorption coefficient	5.205 mm ⁻¹	
F(000)	4240	
Crystal size	$0.07 \ x \ 0.07 \ x \ 0.05 \ mm^3$	
Theta range for data collection	3.276 to 54.877°.	
Index ranges	-26<=h<=26, -21<=k<=21, -2	7<=l<=26
Reflections collected	88491	
Independent reflections	8247 [R(int) = 0.0699]	
Completeness to theta = 53.594°	99.7 %	
Absorption correction	Semi-empirical from equivale	nts
Max. and min. transmission	0.7510 and 0.5513	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	8247 / 48 / 587	
Goodness-of-fit on F ²	1.053	
Final R indices [I>2sigma(I)]	R1 = 0.0348, wR2 = 0.0844	
R indices (all data)	R1 = 0.0456, wR2 = 0.0896	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.467 and -0.784 e.Å ⁻³	

Table S4-1. Crystal data and structure refinement for 3c.

Figure S7. ORTEP diagrams of [(*t*-Bu-BrettPhos)Pd(4-CF₃Ph)(OCF₃)] **5a**.

Identification code	mj20146_0m	
Empirical formula	C39 H53 F6 O3 P Pd	
Formula weight	821.18	
Temperature	170.05 K	
Wavelength	1.34139 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 12.1827(4) Å	α= 87.361(2)°.
	b = 12.7262(4) Å	β= 71.886(2)°.
	c = 13.4392(4) Å	$\gamma = 80.533(2)^{\circ}$.
Volume	1953.34(11) Å ³	
Ζ	2	
Density (calculated)	1.396 Mg/m ³	
Absorption coefficient	3.158 mm ⁻¹	
F(000)	852	
Crystal size	0.08 x 0.06 x 0.05 mm ³	
Theta range for data collection	3.010 to 54.996°.	
Index ranges	-14<=h<=14, -15<=k<=14, -16	6<=l<=16
Reflections collected	28966	
Independent reflections	7427 [R(int) = 0.0494]	
Completeness to theta = 53.594°	99.8 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	0.7508 and 0.5105	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	7427 / 0 / 465	
Goodness-of-fit on F ²	1.031	
Final R indices [I>2sigma(I)]	R1 = 0.0411, wR2 = 0.1055	
R indices (all data)	R1 = 0.0456, wR2 = 0.1092	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.215 and -1.068 e.Å ⁻³	

 Table S5-1. Crystal data and structure refinement for 5a.