Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Synthesis and photophysical properties of 1,7-aroyl BODIPYs: An experimental and

theoretical study

Ilya V. Efimov,*^[a] Almira R. Miftyakhova,^[a] Maria D. Matveeva,^[b] Dmitry I. Zhilyaev,^[a] Paweł Czulkin,^[c] Patryk Janasik,^[c] Giovanni Talarico*^[d] and Leonid G. Voskressensky^[a]

^a Research Center: Molecular Design and Synthesis of Innovative Compounds for Medicine, RUDN University, 117198, Russia, Moscow, Miklukho-Maklaya st, 6

^b A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, 119991, Moscow, Russian Federation

^c Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9,44-100 Gliwice, Poland

^d Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, 80126 Napoli, Italy

* Corresponding author. E-mail address: ilya.efimov00@gmail.com

Supporting information

Table of Contents

1.	NMR spectra for products	2
2.	HRMS	23
3.	Quantum-chemical calculations	30
4.	Reference	35

¹H NMR spectrum of 4a

¹⁹F NMR spectrum of 4a

¹⁹F NMR spectrum of **4c**

¹H NMR spectrum of **4e**

¹H NMR spectrum of **4g**

¹⁹F NMR spectrum of **4h**

					· .							·		·		·		· · ·			· · · ·	
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100 f1 (мд)	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210

¹⁹F NMR spectrum of **4i**

¹H NMR spectrum of **4**k

¹⁹F NMR spectrum of 4k

131.80 131.80 131.89

-130.5 -131.0 -131.5 -132.0 -132.5 -133.0 -133.5 -134 f1 (мд)

¹³C NMR spectrum of **4**l

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (мд)

¹³C NMR spectrum of **4m**

¹⁹F NMR spectrum of **4m**

¹H NMR spectrum of **4n**

2. HRMS

4a

4d

4c

Bruker Compass DataAnalysis 4.0 printed: 06.12.2020 13:53:17 Page 1 of 1

4e

4h

Bruker Compass DataAnalysis 4.0

4j

Bruker Compass DataAnalysis 4.0

printed: 03.05.2021 17:41:21

Page 1 of 1

4i

printed: 03.05.2021 17:45:08

Page 1 of 1

printed: 03.05.2021 17:47:08

Page 1 of 1

Figure S1. Experimental variation of the main peaks for excitation (λ_{ex}) and emission (λ_{em}) in nm and quantum yield depending on BODIPY ligand variation.

3. Quantum-chemical calculations

DFT and time-dependent density functional theory (TD-DFT) calculations to obtain minimum energy structures in both the ground and excited states for all structures reported in the text were performed by using Gaussian16 set of programs.¹ The ground state was optimized at B3LYP level² with 6-31G(d,p) basis set and stationary points were characterized using vibrational analysis. The absorption spectra for all structures were simulated by using TD-DFT calculations with a range-separated versions CAM-B3LYP³ and 6-311+G(d,p) basis set. Solvent effects were treated by the conductor-like polarizable continuum model (CPCM) model⁴ adopted in the linear response formalism when used with TD-DFT. According to a general trend of TD-DFT

methods⁵ we found an overestimation of calculated absorption band peaks with respect to the experimental ones (reported in Figure 4 for **4a-4n** structures and Figure 5 of the main text) of about 0.3 eV; nevertheless, the shift for absorption and emission spectra going from structures **A-D** of Figure S1 is well reproduced (Figure S2-A and Figure S2-B). Finally, our TD-DFT analysis revealed that the maximum of absorption for the $S_0 \leftarrow S_1$ transition corresponds to the HOMO and LUMO difference. The near-UV region with maximum at about 320-360 nm (see Figure S2-A) can be attributed to the $S_0 \leftarrow S_2$ and $S_0 \leftarrow S_3$ transitions and differences within the **4a-4n** structures may be found on the molecular contribution (compare Figure 6 and Figure S4). All details for the absorption and emission spectra for the new synthesized compounds are reported in Table S1 and Table S2. Finally, if we approximated the emission process by a vertical $S_0 \leftarrow S_1$ transition, the emission decay rate k_r from the excited to the ground state can be calculated by using the equation (1):

$$kr = \frac{4}{3} \frac{\Delta E^3}{C3} \mu^2 10$$
 (1)

where ΔE corresponds to the S₀ \leftarrow S₁ transition energy. *c* is the light speed and μ^2_{10} is the transition dipole strength calculated in atomic unit. The values used for the plot of Figure 9 of the main text are reported in Table S1 and Table S3.

Once calculated the k_r of equation (1) by using the computational values reported in Table S1 and Table S3, we can estimate the k_{nr} of selected BODIPY compounds by using the experimental quantum yield in the equation (2).

Figure S2 TD-DFT (CAM-B3LYP/6311+G(d,p)) simulated spectra for excitation (A) and emission (B) of BODIPY compounds (A, B, C, D) reported in Figure S1 in CH_2Cl_2 as solvent.

Figure S3. TD-DFT (CAM-B3LYP/6311+G(d,p)) molecular orbital for $S_0 \leftarrow S_1$ transition corresponding to the HOMO (left) and LUMO (right) difference for BODIPY compounds **A**, **B**, **C** reported in Figure S1 in CH₂Cl₂ as solvent.

Figure S4. TD-DFT (CAM-B3LYP/6311+G(d,p)) molecular orbital of **4h** for the absorption peak at λ_{ex} 565 nm (S₀ \leftarrow S₁ transition) corresponding to the HOMO (**A**) and LUMO (**B**) difference whereas the maximum at about 325 nm can be attributed to the S₀ \leftarrow S₂ and S₀ \leftarrow S₃ transitions coming from the HOMO-1 (**C**) and HOMO-9 (**D**).

Table S1. Calculated main assignments (coefficient), excitation energies *E* (in eV), maximum absorption wavelengths λ_{abs} (in nm), the oscillator strength *f*, for selected compounds at the TD-CAM-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d,p) level by using dichloromethane as solvent (CPCM).

Compounds	Main assignment	E	λ_{abs}	f
Α	$H \rightarrow L (0.70017)$	2.8029	442.34	0.6763
Α	$H_{-1} \rightarrow L (0.6913)$	3.8654	320.76	0.0474
Α	$H_{-2} \rightarrow L (0.7003)$	4.1668	297.55	0.0699
В	$H \rightarrow L (0.6965)$	2.4287	510.49	0.8634
В	$H_{-1} \rightarrow L (0.6886)$	3.3556	369.49	0.0039
В	$H_{-11} \rightarrow L (0.14859)$	3.5117	353.06	0.0420
С	$H \rightarrow L (0.696)$	2.3104	536.62	0.8027
С	$H_{-1} \rightarrow L (0.593)$	3.3502	370.09	0.1473
С	$H_{-10} \rightarrow L (0.586)$	3.7130	333.92	0.0476
D (4a)	$H \rightarrow L (0.69527)$	2.4225	511.79	0.7480
D (4a)	$H_{-1} \rightarrow L (0.64369)$	3.6673	338.08	0.4475
D (4a)	$H_{-8} \rightarrow L (0.49436)$	3.7628	329.50	0.0450
4b	$H \rightarrow L (0.69534)$	2.4161	513.16	0.7493
4b	$H_{-1} \rightarrow L (0.65414)$	3.6333	341.24	0.4449
4b	$H_{-8} \rightarrow L (0.53123)$	3.7625	329.52	0.0404
4c	$H \rightarrow L (0.69530)$	2.4095	514.55	0.7504
4c	$H_{-1} \rightarrow L (0.66378)$	3.6507	339.62	0.5053
4c	$H_{-8} \rightarrow L (0.49913)$	3.7575	329.97	0.0450
4d	$H \rightarrow L (0.695)$	2.4053	515.47	0.7516
4d	$H_{-1} \rightarrow L (0.6613)$	3.6828	336.65	0.5226
4d	$H_{-9} \rightarrow L (0.45180)$	3.7580	329.92	0.0577
4e	$H \rightarrow L (0.69617)$	2.3130	536.02	0.8180
4e	$H_{-1} \rightarrow L (0.56361)$	3.5521	349.05	0.0577
4e	$H_{-1} \rightarrow L (0.28836)$	3.6880	336.19	0.0085
4f	$H \rightarrow L (0.69514)$	2.4304	510.13	0.7411
4f	$H_{-1} \rightarrow L (0.67621)$	3.4840	355.87	0.4413
4f	$H_{-8} \rightarrow L (0.44567)$	3.7655	329.27	0.0287
4g	$H \rightarrow L (0.69571)$	2.3806	520.81	0.8182
4g	$H_{-1} \rightarrow L (0.56147)$	3.4482	359.57	0.0538
4g	$H_{-2} \rightarrow L (0.42078)$	3.6972	335.35	0.0244
4h	$H \rightarrow L (0.69503)$	2.4370	508.76	0.7319
4h	$H_{-1} \rightarrow L (0.68993)$	3.2008	387.36	0.4135
4h	$H_{-9} \rightarrow L (0.47307)$	3.7716	328.73	0.0289
4i	$H \rightarrow L (0.69503)$	2.4115	514.13	0.7453
4i	$H_{-1} \to L (0.64179)$	3.6627	338.51	0.4610
4i	$H_{-9} \rightarrow L (0.51749)$	3.7637	329.42	0.0458
4j	$H \rightarrow L (0.69506)$	2.3999	516.63	0.7486
4j	$H_{-1} \to L (0.66193)$	3.6442	340.22	0.5185
4j	$H_{-7} \to L (0.46753)$	3.7598	329.77	0.0452
4k	$H \rightarrow L (0.69505)$	2.3936	517.99	0.7461
4k	$H_{-1} \to L (0.66115)$	3.6373	340.87	0.5258
4k	$H_{-7} \to L (0.46402)$	3.7576	329.96	0.0441
41	$H \rightarrow L (0.69512)$	2.3926	518.19	0.7480
41	$H_{-1} \to L (0.66026)$	3.6717	337.68	0.5453
41	$H_{-7} \rightarrow L (0.47451)$	3.7587	329.86	0.0554
4m	$H \rightarrow L (0.69540)$	2.3652	524.19	0.8370
4m	$H_{-1} \to L (0.54808)$	3.4290	361.57	0.0544
4m	$H_{-2} \to L (0.39946)$	3.6823	336.71	0.0281
4n	$H \rightarrow L (0.69522)$	2.4189	512.56	0.7485
4n	$H_{-1} \to L \ (0.64074)$	3.6719	337.66	0.4618
4n	$H_{-8} \rightarrow L(0.52516)$	3.7733	328.58	0.0444

Table S2. Calculated main assignments (coefficient), excitation energies *E* (in eV), maximum emission wavelengths λ_{em} (in nm), the oscillator strength *f*, for selected compounds at the TD-CAM-B3LYP/6-311+G(d,p)//TD-CAM-B3LYP/6-31G(d,p) level, by using dichloromethane as solvent (CPCM).

Compounds	Main assignment	E	λ_{em}	f
Α	$H \leftarrow L (0.7005)$	2.7353	453.27	0.6400
В	H ← L (0.6977)	2.2775	545.26	0.8429
С	H ← L (0.6969)	2.1620	573.48	0.7815
D (4a)	H ← L (0.6964)	2.2477	551.61	0.7032
4b	H ← L (0.6949)	2.2445	552.40	0.7074
4c	H ← L (0.69646)	2.2337	555.07	0.7041
4d	$H \leftarrow L (0.6965)$	2.2288	556.28	0.7037
4e	H ← L (0.69740)	2.1230	584.01	0.7743
4f	H ← L (0.69627)	2.2604	548.50	0.7010
4g	H ← L (0.69687)	2.1662	572.37	0.7733
4g	$H_{-1} \leftarrow L (0.64922)$	3.1527	393.27	0.0851
4g	$H_{-2} \leftarrow L (0.50807)$	3.5145	352.78	0.0361
4h	H ← L (0.69621)	2.2703	546.11	0.6981
4h	$H_{-1} \leftarrow L (0.69023)$	3.0996	400.00	0.4309
4h	H ₋₉ ← L (0.46426)	3.7015	334.95	0.0195
4i	$H \leftarrow L (0.69621)$	2.2371	554.23	0.6976
4j	H ← L (0.69626)	2.2232	557.68	0.6980
4k	H ← L (0.69626)	2.2179	559.02	0.6954
41	H ← L (0.69632)	2.2150	559.74	0.6955
4m	H ← L (0.69622)	2.1533	575.78	0.7945
4n	H ← L (0.69635)	2.2450	552.27	0.7037

Table S3. Experimental QY and calculated TD-CAM-B3LYP/6-311+G(d,p) (dichloromethane as solvent (CPCM)) k_r , and k_{nr} values following the equations (2) and (3). The energies for the S₀ \leftarrow S₁transition are reported in Table S1.

Compounds	QY	$k_{nr}(s^{-1})$	$k_{nr}(s^{-1})$	μ^{2}_{10}
4a	0.83	9.44(10-10)	4.60702(10-9)	12.6022
4b	0.84	8.71(10-10)	4.5706(10-9)	12.6022
4c	0.96	1.91(10-10)	4.57288(10-9)	12.7124
4d	0.71	1.86(10-9)	4.56422(10-9)	12.7549
4f	0.67	2.32(10-9)	4.7086(10-9)	12.7549
4h	0.12	3.35(10-8)	4.56228(10-9)	12.2584

4. Reference

- M. J. T. Frisch, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, Jr., J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada,M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.;Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma,K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.;Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.;Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Challacombe, M.; Gill, P.M.W.; Johnson, B.;Chen, W.; Wong, M.W.; Gonzalez, C.; and Pople, J.A.; Gaussian, Inc., Wallingford CT, 2004, 2004.
- a) A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377; b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; c) C.
 Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
- 3 T. Yanai, D. P. Tew and N. C. Handy, Chem. Phys. Lett., 2004, 393, 51.
- 4 M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669.
- D. Jacquemin, E. A. Perpète, G. E. Scuseria, I. Ciofini and C. Adamo, J. Chem. Theory Comput., 2008, 4, 123.