Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Porous single crystal niobium nitride and tantalum nitride nanocubes boost catalytic performance

Wanxiang Zhao,^{a,b} Kui Xie *b,c

^a College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China.

^b Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China. E-mail: <u>kxie@fjirsm.ac.cn</u>.

^c Advanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou, Guangdong 116023. China.

Lewis acid sites:

The density of Lewis acid sites at surface is calculated according to the equation:

$$d = D_{SAPO-34} \times A \times N_A / (A_{SAPO-34} \times S_{BET})$$
(1)

Where d is the density of Lewis acid site of test samples, $D_{SAPO-34}$ is the density of acid site of standard sample SAPO-34 which is 2.55×10^{-4} mol/g.^{1, 2} A is the integral area of the mass spectrometry signal of -NH₂ of PSC-N Ta₃N₅ or PSC-N Nb₄N₅ monoliths harvested by NH₃-TPD. A_{SAPO-34} is the integral area of mass spectrometry signal of NH₃ of SAPO-34. N_A is the Avogadro's number. SBET is the specific surface area of PSC-N Ta₃N₅ or PSC-N Nb₄N₅.

Fig. S1. Structure of $KTaO_3$ and $NaNbO_3$ Non-porous single crystal, and schematic procedure for the major experimental step of synthesis of PSC Nb_4N_5 and PSC Ta_3N_5 .

Fig. S2. (a-d) XRD pattern, SEM image, TEM image and SAED pattern of PC Nb₄N₅, respectively. (e-h) XRD pattern, SEM image, TEM image and SAED pattern of PC Ta₃N₅, respectively.

Fig. S3. (a, d) The Specific surface area and average pore size of PSC-N Nb₄N₅, Ta₃N₅ and PC Nb₄N₅, Ta₃N₅. (b) Nitrogen adsorption-desorption isotherm of PSC-N Nb₄N₅. (c) Nitrogen adsorption-desorption isotherm of PSC-N Ta₃N₅. (e) Nitrogen adsorption-desorption isotherm of PC Nb₄N₅. (f) Nitrogen adsorption-desorption isotherm of PC Ta₃N₅.

Fig. S4. TEM mapping images of Ta_3N_5 and Nb_4N_5

Fig. S5. The element analysis of Ta_3N_5 and Nb_4N_5

Fig. S6. (a) PSC-N Ta_3N_5 (b) PSC-N Nb_4N_5 .

Figure.S7. (a) FTIR spectra of adsorbed pyridine (b) NH_3 -TPD profiles of PSC-N Ta_3N_5 , PSC-N Nb_4N_5 and molecular sieves sample (SAPO-34) (c) Density of Lewis acid sites of different catalysts

Catalyst	Temperature	Gas	C ₂ H ₆ conversion &		Ref
	(°C)	composition	C ₂ H ₄ selectivity (%)		
PSC-N Ta ₃ N₅	680	C ₂ H ₆ /He=1:9	23.6%	92.4%	This work
$PSC-N Nb_4N_5$	680	C ₂ H ₆ /He=1:9	21.4%	90%	This work
Pt@HZSM-5	550	C ₂ H ₆ /N ₂ =9:1	15.2%	88.4%	3
MoN	660	C ₂ H ₆ /He=1:9	25%	99%	4
2.5 wt.% P+	600	C ₂ H ₄ /N ₂ /He=1:1:8	17%	77%	5
Pt/M-TS-1	600	C ₂ H ₆ /Ar =3:1	15.7%	99%	6
CsRu/CeO ₂	700	C ₂ H ₆ /N ₂ =1:1	41%	87%	7
0.8Cr/MFI	650	C ₂ H ₆ /N ₂ =2:8	17.2%	99%	8
0.125-Pd /TiO ₂	Room temperature	C ₂ H ₆ /Ar =1:1	0.26%	94.2%	9

Table S1. Comparative performance of ethane dehydrogenation to ethylene for PSC-N Ta_3N_5 and PSC-N Nb_4N_5 with other catalysts

References

- 1. G. Lin, Y. Su, X. Duan and K. Xie, *Angew Chem Int Ed Engl*, 2021, **60**, 9311-9315.
- 2. X. Yu, F. Cheng, X. Duan and K. Xie, *Research (Wash D C)*, 2022, **2022**, 9861518.
- 3. B. Qiu, Y. Zhang, Y. Liu and Y. Zhang, *Applied Surface Science*, 2021, **554**.
- 4. G. Lin, H. Li and K. Xie, Angew Chem Int Ed Engl, 2020, **59**, 16440-16444.
- 5. Z. Ji, H. Lv, X. Pan and X. Bao, *Journal of Catalysis*, 2018, **361**, 94-104.
- Y. Pan, A. Bhowmick, W. Wu, Y. Zhang, Y. Diao, A. Zheng, C. Zhang, R. Xie, Z. Liu, J. Meng and D. Liu, ACS Catalysis, 2021, 11, 9970-9985.
- 7. X. Wang, Y. Wang, B. Robinson, Q. Wang and J. Hu, *Journal of Catalysis*, 2022, **413**, 138-149.
- 8. S. De, S. Ould-Chikh, A. Aguilar, J.-L. Hazemann, A. Zitolo, A. Ramirez, S. Telalovic and J. Gascon, *ACS Catalysis*, 2021, **11**, 3988-3995.
- 9. Q. Li, H. Yue, C. Liu, K. Ma, S. Zhong, B. Liang and S. Tang, *Chemical Engineering Journal*, 2020, **395**.