Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Highly efficient rGO-MoS₂ nanohybrid based laccase biosensor for hydroquinone detection in waste water

Sakshi Verma, Chandra Mouli Pandey, D Kumar

Figure S1. UV visible spectra of (i) GO and (ii) rGO-MoS₂

Figure S2. (A)Adsorption studies of 10 ppm MB under 2.5mg of rGO-MoS₂ nanocomposite using UV-Visible spectroscopy **(B)** Pseudo first order kinetics plot **(C)** Temkin adsorption isotherm plot **(D)** Freundlich adsorption isotherm plot

Figure S3. Zeta potential distribution of rGO-MoS₂ nanocomposite in DI

Figure S4. Comparison between CV (i) rGO-MoS₂/ITO (ii) GO/ITO (iii) Lac/rGO-MoS₂/ITO electrode and (iv) Hq/Lac/rGO-MoS₂/ITO electrode measured at 50 mV/s in PBS consisting of 5mM [Fe(CN)₆]³⁻ and [Fe(CN)₆]⁴⁻

Figure S5. Variation of concentration of Lac enzyme immobilized onto rGO-MoS₂/ITO for 100 μ M Hq using Chronoamperometry

Figure S6. Variation of pH for PBS buffer for biosensing of 100 μ M Hq using Chronoamperometry

Figure S7. Reproducibility of the fabricated biosensor at 100 μ M Hq

Table 1. Comparison of adsorption capacity of different materials towards MB dye**Table 2.** Feasibility of adsorption equations and isotherms towards adsorption of MB dye usingrGO-MoS2 with other parameters

Fig.S1

Fig.S5

Fig.S3

Table S1.

Adsorbent	Adsorption capacity		Concentration of MB		Reference	,
CNT	35.4 mg/g		20 ppm		[1]	
Graphene	39.92 mg/g		20 ppm		[2]	
Equations KMgFe(PO ₄) ₂ Pseudo first order	R² value 22.83 mg/g 0.986	Oth	er Parameter 10 ppm	\	alue [3]	
Electrolytic Pseudo second manganese anode order slime	70.74 mg/g 0.999	Rate c (g mg	$\frac{500 \text{ ppm}}{\text{onstant}(k_2)}$ ⁻¹ min ⁻¹)	0.024	[4]	
Henry Nb-W complex	1 19.41 mg/g	Rate c	onstant 10 ppm	4.998	[5]	_
Těid kin	0.919			1		
LabyMan ² nanocomposite	48.7 0.99%	q _m (m	g lမြာppm	39.06	This work	

Freundlich 0.904			b (L mg ⁻¹)	10.7
	Freundlich	0.904		

References

- [1] Y. Yao, F. Xu, M. Chen, Z. Xu, and Z. Zhu, "Adsorption behavior of methylene blue on carbon nanotubes," *Bioresour. Technol.*101, (2010) 3040–3046. doi: https://doi.org/10.1016/j.biortech.2009.12.042.
- T. Liu *et al.*, "Adsorption of methylene blue from aqueous solution by graphene," *Colloids Surfaces B Biointerfaces*. 90 (2012) 197–203. doi: https://doi.org/10.1016/j.colsurfb.2011.10.019.
- [3] A. Badri, I. Alvarez-Serrano, M. Luisa López, and M. Ben Amara, "Sol-gel synthesis, magnetic and methylene blue adsorption properties of lamellar iron monophosphate KMgFe(PO4)2," *Inorg. Chem. Commun.*121 (2020) 108217. doi: https://doi.org/10.1016/j.inoche.2020.108217.
- [4] P. Su *et al.*, "Hydroxylation of electrolytic manganese anode slime with EDTA-2Na and its adsorption of methylene blue," *Sep. Purif. Technol.*278, (2021) 119526. doi: https://doi.org/10.1016/j.seppur.2021.119526.
- [5] J. Yu, Y. Han, H. Jong, H. I. Jong, and G. Ra, "Two-step hydrothermal synthetic method of niobium-tungsten complex oxide and its adsorption of methylene blue," *Inorganica Chim. Acta.* 507 (2020) 119562. doi:https://doi.org/10.1016/j.ica.2020.119562.
- [6] A. Kołodziejczak-Radzimska, A. Budna, F. Ciesielczyk, D. Moszyński, and T. Jesionowski, "Laccase from Trametes versicolor supported onto mesoporous Al2O3: Stability tests and evaluations of catalytic activity," *Process Biochem*.95 (2020) 71–80. doi: https://doi.org/10.1016/j.procbio.2020.05.008.
- [7] G. Aydoğdu Tığ, D. Koyuncu Zeybek, S. Pekyardimci, and E. Kiliç, "A novel amperometric biosensor based on ZnO nanoparticles-modified carbon paste electrode for determination of glucose in human serum," *Artif. Cells Nanomed. Biotechnol.* (2012) 1–7.