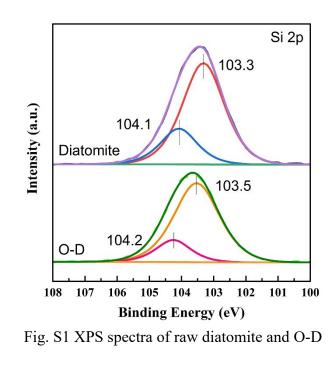
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information


1

2	Effect of alkali treatment and organic modification of
3	diatomite on the properties of diatomite composite separator
4 5	Bing Xue ^{a,b} , Tianxing Yi ^{a,b} , Dongni Li ^{a,b} , Fangfei Li ^{a,b} , Feng Luo ^{a,b,*}
6	^a Key Laboratory of Automobile Materials of Ministry of Education, Changchun 130022, China
7	^b Department of Materials Science and Engineering, Jilin University, Changchun 130022, China
8 9	*Corresponding: Feng Luo (luofeng@jlu.edu.cn)

Fig. S1 displays XPS spectra of Si 2p on surface of raw diatomite and organic-1 modified diatomite (O-D). In the spectrum of raw diatomite, the peak of Si 2p was at 2 103.3 eV, which was in agreement with Si 2p in SiO₂ (103.3 eV).¹ As hydroxyl was 3 electron withdrawing group, the binding energy of Si 2p in Si-OH on the diatomite 4 surface shifted to 104.1 eV. In the XPS spectrum of O-D, two peaks of Si 2p appeared 5 at 103.5 and 104.2 eV, respectively. The higher intensity Si 2p peak at 103.5 eV was 6 attributed to Si 2p in H₂C=C(CH₃)CO₂(CH₂)₃-Si from the modifier MPS on O-D 7 surface. The group H₂C=C(CH₃)CO₂(CH₂)₃- was a electron withdrawing group and 8 therefore the binding energy was slightly higher than SiO_2 (103.3 eV). As MPS 9 reacted with Si-OH and the amount of -OH greatly decreased, the peak of Si-OH 10 became weak. 11

12 The corresponding revision has been added to the revised manuscript and13 Supporting Information.

14

15 16

17