Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

SUPPLEMENTARY MATERIAL

Selenylated indoles: synthesis, effects on lipid membranes properties and

interaction with DNA

Gabriela J. Pedroso,^a Desirée M. S. Costa,^b Lucas T. Felipe Kokuszi,^b Eduardo B. V. da Silva,^b Marcos F. O. Cavalcante,^c Eduardo Junca,^d Cassio A. O. Moraes,^e Claus T. Pich,^a Vânia R. de Lima,^b Sumbal Saba,^c Jamal Rafique,^{c,e,*} Tiago E. A. Frizon^{a*}

^a Department of Energy and Sustainability, Federal University of Santa Catarina, Araranguá, SC, Brazil. E-mail: <u>tiago.frizon@ufsc.br</u>

^b Escola de Química e Alimentos, Programa de Pós-Graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, RS, Brazil.

[°] Instituto de Química, Universidade Federal de Goiás, Goiânia, 74690-900, GO-Brazil.

^d University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil

^e Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, 79074-460, MS-Brazil. jamal.rafique@ufms.br , jamal.chm@gmail.com

*E-mail: tiago.frizon@ufsc.br , jamal.rafique@ufms.br

TABLE OF CONTENTS

1.	Infrared characterization	 2
2.	NMR characterization	 3

	ASO	3a	Δ	3b	Δ	3c	Δ	3d	Δ
v _{as} N⁺(CH ₃)₃	979.84	981.17	1.93	979.84	-	975.56	-4.28	979.84	-
$V_{as} PO_2^-$	1219.01	1219.01	-	1219.01	-	1219.01	-	1219.01	-
<i>v</i> _s PO ₂ ⁻	1082.07	1093.64	11.57	1074.35	-7.72	1070.49	-11.58	1078.21	-3.86
<i>v</i> C=O	1734.01	1734.01	-	1734.01	-	1734.01	-	1732.08	-1.93
<i>v</i> C-O-C	1077.09	1075.47	1.69	1074.44	2.65	1074.57	2.52	1074.70	2.39
$v_{as} CH_2$	2924.09	2924.09	-	2924.09	-	2924.09	-	2924.09	-
	2852.72	2852.72	-	2854.65	1.93	2852.72	-	2852.72	-

Table ESI1. Wavenumber values (cm⁻¹) of HATR-FTIR peaks related to specific groups of asolectin liposomes (ASO) in the presence of selenylated indoles (**3a-d**).

Table ESI2. Bandwidth values (cm⁻¹) of HATR-FTIR peaks related to specific groups of asolectin liposomes (ASO) in the presence of selenylated indoles (**3a-d**).

	ASO	3a	Δ	3b	Δ	3c	Δ	3d	Δ
vas N⁺(CH3)3	2.64	3.09	0.45	5.17	2.53	7.93	5.29	10.47	7.83
$v_{as} PO_2^-$	7.55	7.80	0.25	8.05	0.5	7.80	0.25	7.55	-
	33.56	44.43	10.87	41.16	7.6	40.27	6.71	39.32	5.76
<i>v</i> C=O	25.04	23.87	-1.17	31.31	6.27	33.65	8.61	31.7	6.66
<i>v</i> C-O-C	12.79	4.52	-8.27	2.54	-10.25	10.75	-2.04	6.73	-6.06
$v_{as} CH_2$	18.46	17.72	-0.74	19.19	0.73	15.51	-2.95	19.19	0.73
v _s CH ₂	12.55	11.82	-0.73	11.81	-0.74	9.6	-2.95	11.81	-0.74

NMR Spectra

Figure ESI5: ¹³C NMR (50 MHz, CDCl₃) spectrum of **3b**

S6

S7

