SUPPLEMENTARY MATERIAL

Therapeutic Opportunities of Surface-Active Ionic Liquids: A Case Study on Acetylcholinesterase, Citrate Synthase and HeLa Cell Lines

Prayasee Baruah,^a Dhiman Ray,^a Ibemhanbi Konthoujam,^b Abhinandan Das,^c Suman Chakrabarty,^c Kripamoy Aguan^b and Sivaprasad Mitra^{a,*}

^aCentre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India; ^bDepartment of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793 022, India; ^cDepartment of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India.

CONTENT

Item	Description	Page no.
Fig. S1	HRMS spectra of N-dodecylpyridinium bromide (DPB)	S3
Fig. S2	¹ H NMR spectra of N-dodecylpyridinium bromide (DPB)	S4
Fig. S3	¹³ C NMR spectra of N-dodecylpyridinium bromide (DPB)	S5
Fig. S4	FTIR spectra of N-dodecylpyridinium bromide (DPB)	S 6
Fig. S5	HRMS spectraof N-tetradecylpyridinium bromide (TPB)	S 7
Fig. S6	¹ H NMR spectra of N-tetradecylpyridinium bromide (TPB)	S 8
Fig. S7	¹³ C NMR of N-tetradecylpyridinium bromide (TPB)	S9
Fig. S8	FTIR spectra of N-tetradecylpyridinium bromide (TPB)	S10
Fig. S9	HRMS spectra of N-dodecyl-N-methylmorpholinium Bromide (DMB)	S11
Fig. S10	¹ H NMR spectra of N-dodecyl-N-methylmorpholinium Bromide (DMB)	S12
Fig. S11	¹³ C NMR spectra of N-dodecyl-N-methylmorpholinium Bromide (DMB)	S13
Fig. S12	FTIR spectra of N-dodecyl-N-methylmorpholinium Bromide (DMB)	S14
Fig. S13	HRMS spectra of N-tetradecyl-N-methylmorpholinium Bromide (TMB)	S15
Fig. S14	¹ H NMR spectra of N-tetradecyl-N-methylmorpholinium Bromide (TMB)	S16
Fig. S15	¹³ C NMR spectra of N-tetradecyl-N-methylmorpholinium Bromide (TMB)	S17
Fig. S16	FTIR spectra of N-tetradecyl-N-methylmorpholinium Bromide (TMB)	S18
Fig. S17	HRMS spectra of 1-dodecyl-3-methylimidazolium Bromide (DIB)	S19
Fig. S18	¹ H NMR spectra of 1-dodecyl-3-methylimidazolium Bromide (DIB)	S20
Fig. S19	¹³ C NMR spectra of 1-dodecyl-3-methylimidazolium Bromide (DIB)	S21
Fig. S20	FTIR spectra of 1-dodecyl-3-methylimidazolium Bromide (DIB)	S22
Fig. S21	HRMS spectra of 1-tetradecyl-3-methylimidazolium Bromide (TIB)	S23
Fig. S22	¹ H NMR spectra of 1-dodecyl-3-methylimidazolium Bromide (TIB)	S24
Fig. S23	¹³ C NMR spectra of 1-dodecyl-3-methylimidazolium Bromide (TIB)	S25
Fig. S24	FTIR spectra of 1-dodecyl-3-methylimidazolium Bromide (TIB)	S26

HRMS: Calculated for $[M]^+$ (m/z): $C_{17}H_{30}N^+$ 248; Found: 248.

Fig. S2. ¹H NMR spectra of N-dodecylpyridinium bromide (DPB).

¹H NMR (400 MHz: CDCl₃, δ /ppm relative to TMS): 0.88 (t, j = 6 Hz, 3H, dodecyl-CH₃), 1.23 (brs, 16H, dodecyl C₄, C₅, C₆, C₇, C₈, C₉, C₁₀, C₁₁-H), 2.06 (t, j=6Hz, 2H, dodecyl C₃-H), 2.35 (brs, 2H, C₂-H), 4.99 (t, j=6Hz, 2H, dodecyl C₁-H), 8.20 (t, j=6Hz, 2H, NCH(CH)₂), 8.58 (m, 1H, NCHCHCH), 9.47 (d, j=4Hz, 2H, N(CH)₂) ppm.

¹³C NMR (400 MHz: CDCl₃, δ/ppm relative to TMS): 14.25, 22.81, 26.23, 29.23,29.46, 29.51, 29.65, 29.73, 32.03, 32.12, 62.35, 128.71, 145.27, 145.40.

Fig. S4. FTIR spectra for N-dodecylpyridinium bromide (DPB).

FTIR: v_{max} (neat): 3392 cm⁻¹ (aromatic C-H stretching), 2914 & 2857 cm⁻¹ (aliphatic C-H stretching), 1641 cm⁻¹ (C=N stretching), 1484 cm⁻¹ (CH₂ bending), 1324 cm⁻¹ (CH₂ bending), 1176 cm⁻¹ (C-N stretching), 1052, 768, and 673 cm⁻¹ (symmetrical deformations of -CH₃ groups).

Fig. S5. HRMS spectra of N-tetradecylpyridinium bromide (TPB).

HRMS: Calculated for [M]+ (m/z): $C_{19}H_{34}N^+$ 276; Found: 276.

Fig. S6. ¹H NMR spectra of N-tetradecylpyridinium bromide (TPB).

¹H NMR (400 MHz: CDCl₃, δ /ppm relative to TMS): 0.89 (t, j=6 Hz, 3H, dodecyl-CH₃), 1.23 (br s, 18H, dodecyl C₅, C₆, C₇, C₈, C₉, C₁₀, C₁₁, C₁₂, C₁₃-H), 1.80 (br s, 4H, dodecyl C₃, C₄-H), 2.06 (t, j=8 Hz, 2H, dodecyl C₂-H), 5.03 (t, j=6 Hz, 2H, dodecyl C₁-H), 8.15 (d, j= 4Hz, 2H, NCH(CH)₂), 8.51 (s, 1H, NCHCHCH), 9.46 (d, j=4 Hz, 2H, N(CH)₂) ppm.

Fig. S7. ¹³C NMR spectra of N-tetradecylpyridinium bromide (TPB).

13C NMR (400 MHz: CDCl₃, δ/ppm relative to TMS): 14.33, 22.91, 26.31, 29.29, 29.57, 29.72, 29.81, 29.86, 29.89, 32.14, 32.22, 62.57, 128.62, 145.29, 145.37.

Fig. S8. FTIR spectra of N-tetradecylpyridinium bromide (TPB).

FTIR: v_{max} (neat): 3392 cm⁻¹ (aromatic C-H stretching), 2917 & 2851 cm⁻¹ (aliphatic, C-H stretching), 1636 cm⁻¹ (C=N stretching), 1480 cm⁻¹ (CH₂ bending), 1324 cm⁻¹ (CH₂ bending), 1179 cm⁻¹ (C-N stretching), 785, 673, and 575 cm⁻¹ (symmetrical deformations of -CH₃ groups).

HRMS: Calculated for $[M]^+$ (m/z): $C_{17}H_{36}ON^+$ 270; Found: 270.

Fig. S10. ¹H NMR spectra of N-dodecyl-N-methylmorpholinium Bromide (DMB).

¹**H-NMR (400 MHz: CDCl₃, δ/ppm relative to TMS):** 0.90 (t, 3H, dodecyl-CH₃), 1.26 (br s, 16H, dodecyl C₇, C₈, C₉, C₁₀, C₁₁, C₁₂, C₁₃-H), 1.82 (m, 4H, dodecyl C₅,C₆), 3.59 (br s, 3H, NCH₃),3.66 (t, j= 2H, NCH₂),3.91 (m,4H, N(CH₂)₂),4.12 (m,4H, O(CH₂)₂).

Fig. S11. ¹³C NMR of N-dodecyl-N-methylmorpholinium Bromide (DMB).

¹³C NMR (400 MHz: CDCl₃, δ/ppm relative to TMS): 14.33, 22.21, 22.90, 26.53, 29.49, 29.54, 29.62, 29.69, 29.81, 32.12, 47.65, 59.99, 60.99, 65.75.

Fig. S12. FTIR spectra of N-dodecyl-N-methylmorpholinium Bromide (DMB).

FTIR: v_{max} (neat): 3441 cm⁻¹ (O-H stretching), 2919 and 2851 cm⁻¹ (aliphatic, C-H stretching), 1636 cm⁻¹ (C=N stretching), 1474 cm⁻¹ (CH₂ bending), 1118 cm⁻¹ (C-N stretching), 908, and 721 cm⁻¹ (symmetrical deformations of -CH₃ groups).

Fig. S13. HRMS spectra of N-tetradecyl-N-methylmorpholinium Bromide (TMB).

HRMS: Calculated for $[M]^+$ (m/z): $C_{19}H_{40}ON^+$ 298; Found: 298.

¹H-NMR (400 MHz: CDCl₃, δ /ppm relative to TMS): 0.90 (t, j=8 Hz, 3H, dodecyl-CH₃), 1.26 (br s, 20H, dodecyl C₄, C₅, C₆, C₇, C₈, C₉, C₁₀, C₁₁, C₁₂, C₁₃-H), 1.78 (t, j=4Hz,2H, dodecyl C₂), 2.37 (brs, 2H, dodecyl C₃), 3.59 (s, 3H, NCH₃), 3.66 (d, j=8Hz, 2H, dodecyl C₁), 3.88 (m, 2H, N(CH₂)₂), 4.10 (m,4H, O(CH₂)₂).

Fig. S15. ¹³C NMR spectra of N-tetradecyl-N-methylmorpholinium Bromide (TMB).

¹³C-NMR (400 MHz: CDCl₃, δ/ppm relative to TMS):14.32, 22.19, 22.89, 26.53, 29.48, 29.56, 29.62, 29.69, 29.81, 29.85, 29.88, 32.13, 44.17, 47.64, 53.74, 59.97, 60.98, 63.82.

Fig. S16. FTIR spectra of N-tetradecyl-N-methylmorpholinium Bromide (TMB).

FTIR: v_{max} (neat): 3478 (O-H stretching), 3061 (N-H axial deformation), 2915 and 2851 cm⁻¹ (aliphatic, C-H stretching), 1630 and 1570 cm⁻¹ (C=N stretching), 1472 cm⁻¹ (CH₂ bending), 1178 cm⁻¹ (C-N stretching), 855, 791, and 622 cm⁻¹ (symmetrical deformations of -CH₃ groups).

Fig. S17. HRMS spectra of 1-dodecyl-3-methylimidazolium Bromide (DIB).

HRMS: Calculated for [M]+ (m/z): $C_{16}H_{31}N_2^+$ 251; Found: 251.

.

¹H NMR (400 MHz: CDCl₃, δ/ppm relative to TMS): 0.89 (t, j=6 Hz, 3H, dodecyl-CH₃), 1.25 (br s, 16H, dodecyl C₄, C₅, C₆, C₇, C₈, C₉, C₁₀, C₁₁-H), 1.93 (t, j=8Hz, 2H, dodecyl C₃-H), 2.52 (brs, 2H, dodecyl C₂-H), 4.13 (s, 3H, NCH₃), 4.34 (t, j=8Hz, 2H, dodecyl C₁-H), 7.44 (t, j=2Hz, 1H, C₄-H), 7.61 (t, j=2Hz, 1H, C₅-H), 10.14 (s, 1H, C₂-H).

¹³C NMR (400 MHz: CDCl₃, δ/ppm relative to TMS):14.21, 22.77, 26.38, 29.12, 29.42, 29.49, 29.61, 29.69, 30.42, 31.99, 36.93, 50.29, 122.05, 123.86, 137.42.

Fig. S20. FTIR spectra of 1-dodecyl-3-methylimidazolium Bromide (DIB).

FTIR: v_{max} (neat): 3556-3314 cm⁻¹ (aromatic C–H stretching), 2966, 2878 (aliphatic C–H stretching), 1638 cm⁻¹ (C=N stretching), 1478 (CH₂ bending), 1114 cm⁻¹ (C–N stretching), 896, and 635 cm⁻¹ (symmetrical deformations of -CH₃ groups).

HRMS: Calculated for [M]+ (m/z): $C_{18}H_{35}N_2^+$ 279; Found: 276.

Fig. S22. ¹H NMR spectra of 1-tetradecyl-3-methylimidazolium Bromide (TIB).

¹H NMR (400 MHz: CDCl₃, δ /ppm relative to TMS): 0.88 (t, j= 2Hz, 3H, dodecyl-CH₃), 1.25 (br s, 18H, dodecyl C₄, C₅, C₆, C₇, C₈, C₉, C₁₀, C₁₁, C₁₂, C₁₃-H), 1.91 (brs, 4H, dodecyl C₂, C₃-H), 4.13 (t, j=2 Hz, 2H, dodecyl C₁-H), 4.32 (s, 3H, NCH₃), 7.38 (d, j=4 Hz, 1H, C₄-H), 7.53 (d, j=6 Hz, 1H, C₅-H), 10.31 (s, 1H, C₂-H).

¹³C NMR (400 MHz: CDCl₃, δ/ppm relative to TMS): 14.28, 22.85, 26.45, 29.17, 29.51, 29.55, 29.68, 29.76, 29.81, 29.84, 30.48, 37.01, 50.40, 121.94, 123.70, 137.78.

Fig. S24. FTIR spectra of 1-tetradecyl-3-methylimidazolium Bromide (TIB).

FTIR: v_{max} (neat): 3478-3467 cm⁻¹ (aromatic C–H stretching), 2915, 2853 cm⁻¹ (aliphatic C–H stretching), 1630 cm⁻¹ (C=N stretching), 1492 cm⁻¹ (CH₂ bending), 1169 cm⁻¹ (C–N stretching), 781, 668 cm⁻¹ (symmetrical deformations of -CH₃ groups).