Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry

Supporting Information for

Carbon quantum dots synthesis of Ag/PCQDs composite for Hg²⁺

visual detection in dH₂O solution and seawater samples

Lin-Li Wu^a, Xiao-Hong Li^{a^{*}}, Ying Liu^b, Yan-Li Leng^a, Yang Li^a, Xiao-Hua Cai^{a^{*}}

Material and methods

Chemicals/reagents

palm (from Guiyang, Guizhou), AgClO₄ H_2O , $Hg(ClO_4)_2 H_2O_1$ mane Al(ClO₄)3 9H₂O, $Hg(NO_3)_2 2H_2O_1$ HgCl₂, $Hg(OAc)_2 H_2O$, CH₃HgCl, Ca(ClO₄)₂ 4H₂O, $Cd(ClO_4)_2 4H_2O$, $Cu(ClO_4)_2$ 6H2O, $Co(ClO_4)_2$ 6H₂O, $Mg(ClO_4)_2 6H_2O$, $Mn(ClO_4)_2 4H_2O$, $Fe(ClO_4)_3$ 9H₂O, $Ni(ClO_4)_2 6H_2O$, $Pb(ClO_4)_2$ $3H_2O_2$, $Zn(ClO_4)_2$ 6H₂O, BaCl₂ 2H₂O , Cr(NO₃)₃ 9H₂O, FeCl₂, Ga(NO₃)₃ xH₂O, GdCl₃ 6(H₂O), RuCl₃.H₂O, CH₃COONa, NaCl, NaF, Na₂CO₃, Na₃PO₄ 12H₂O, ethyl piperazine ethanesulfonic acid (HEPES) and Na₂SO₄ were of analytical reagent grade and were purchased from SIGMA-ALDRICH. Certified reference material (CRM) of coastal seawater Hg²⁺ was purchased from LGC Standards (UK). Hg^{2+} in the following experiments was all based on $Hg(ClO_4)_2$. The tap water comes from the girls' dormitory of our university without any pretreatment. The river water obtained from Nanming River from Fenghuang Bay. Coastal seawater Hg²⁺ certified reference material (CRM) was purchased from LGC Standards (UK).

Characterization of PCQDs, Ag/PCQDs composite and AgHg amalgam

The crystal structure and surface morphology of the PCQDs, Ag/PCQDs, AgHg

^a School of Chemical Engineering, Guizhou Minzu University, Guizhou, Guiyang 550025, P. R. China.

^b School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, P. R. China.

Corresponding author: lixiaohong668@163.com (X. H. Li).

Co-Corresponding author: caixh1111@163.com (X. H. Cai).

amalgam were measured by a transmission electron microscope JEM-F200 (TEM, JEOL, Tokyo, Japan) with an accelerating voltage of 200 kV. The XPS data were collected with an X-ray photoelectron spectrometer (Thermo Scientific K-Alpha+, ThermoFisher, USA) with a mono Al-K α excitation source (1486.6eV). The UV-Vis absorption spectra of the PCQDs, Ag/PCQDs, AgHg amalgam were achieved via a UV-Vis spectrometer (Shimadzu, Kyoto, Japan) over the wavelength range from 250 nm to 700 nm (1 nm interval). The fluorescence spectrum of the sample was recorded using a fluorescence spectrophotometer (F-320 Gangdong, Tianjin). The DLS size distribution and zeta potential were collected with a nanometer particle size and Zeta potential analyzer (Malvern Zetasizer Nano ZS90). To prove the accuracy of the method, the concentration of Hg²⁺ in real water samples, saline solution and Hg²⁺ seawater CRM were determined by cold vapour atomic absorption spectrometry (CVAAS) using DMA-80 (Milestone, Italy). Compared with the Ag/PCQDs composite method, the concentration of Hg²⁺ in water samples was determined by CVAAS using DMA-80 (ThermoFisher, USA).

Figure 1S. Effect of pH value of Ag/PCQDs composite to Hg²⁺ detection

Figure 2S. Effect of time of Ag/PCQDs composite to Hg²⁺ detection

Figure 3S. Plot of the intensity for the relative absorption intensity $(A_0 - A)/A_0$ over the concentration of Hg²⁺ in dH₂O solution (λ = 426 nm).

The result of the analysis as follows:

Equation:
$$Y = A + B \times X$$

 $Y = 0.0848 \times X - 0.01587$
 $R = 0.9981$
 $S = 0.0848 \times 10^{6}$ K = 3
 $\delta = \sqrt{\frac{\sum (A_{0} - \overline{A}_{0})^{2}}{N - 1}} = 0.00102 \text{ (N = 10)}$
 $LOD = \frac{3\delta}{slope}$, $LOD = K \times \delta / S = 3.54 \times 10^{-8} \text{ M} = 35.4 \text{ nM}$

Figure 4S. Plot of the intensity for the relative absorption intensity $(A_0 - A)/A_0$ over the concentration of Hg²⁺ in 0.6 M NaCl solutions (λ = 426 nm).

The result of the analysis as follows:

Equation: $Y = A + B \times X$ $Y = 0.2218 \times X - 0.09238$ R = 0.9958 $S = 0.2218 \times 10^{6}$ K = 3

Figure 5S. UV–vis absorption values of Ag/PCQDs composite upon different concentrations of Hg^{2+} in the range of 20-200 nM.

Figure 6S. (a) The Zeta potential distribution data of Ag/PCQDs composite (b) Ag/PCQDs composite after addition of $\rm Hg^{2+}$

Figure 7S. The Ag/CQDs upon different mercury sources (50 μ M) (a) in dH₂O solution (b) in seawater samples