Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry

Supporting Information for

Carbon quantum dots synthesis of Ag/PCQDs composite for Hg^{2+}

visual detection in dH_2O solution and seawater samples

Lin-Li Wu^a, Xiao-Hong Li^{a*}, Ying Liu^b, Yan-Li Leng^a, Yang Li^a, Xiao-Hua Cai^{a*}

Material and methods

Chemicals/reagents

palm mane (from Guiyang, Guizhou), $AgClO₄H₂O$, $HgClO₄$)₂ $H₂O$, $Hg(NO₃)₂ 2H₂O$, $HgCl₂$, $Hg(OAc)₂ H₂O$, $CH₃HgCl$, $Al(CIO₄)39H₂O$, $Ca(CIO₄)₂ 4H₂O$, $Cd(CIO₄)₂ 4H₂O$, $Co(CIO₄)₂ 6H₂O$, $Cu(CIO₄)₂ 6H2O$, $Mg(CIO₄)₂ 6H₂O$, $Mn(CIO₄)₂ 4H₂O$, $Fe(CIO₄)₃ 9H₂O$, $Ni(CIO₄)₂ 6H₂O$, $Pb(CIO_4)_{2}3H_2O$, $Zn(CIO_4)_{2}6H_2O$, $BaCl_22H_2O$, $Cr(NO_3)_{3}9H_2O$, $FeCl_2$, $Ga(NO_3)$ ₃ xH₂O, GdCl₃ 6(H₂O), RuCl₃.H₂O, CH₃COONa, NaCl, NaF, Na₂CO₃, $Na₃PO₄12H₂O$, ethyl piperazine ethanesulfonic acid (HEPES) and $Na₂SO₄$ were of analytical reagent grade and were purchased from SIGMA-ALDRICH. Certified reference material (CRM) of coastal seawater Hg^{2+} was purchased from LGC Standards (UK). Hg^{2+} in the following experiments was all based on $Hg(C|O_4)$. The tap water comes from the girls' dormitory of our university without any pretreatment. The river water obtained from Nanming River from Fenghuang Bay. Coastal seawater Hg^{2+} certified reference material (CRM) was purchased from LGC Standards (UK).

Characterization of PCQDs, Ag/PCQDs composite and AgHg amalgam

The crystal structure and surface morphology of the PCQDs, Ag/PCQDs, AgHg

-

^a School of Chemical Engineering, Guizhou Minzu University, Guizhou, Guiyang 550025, P. R. China. ^b School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, P. R. China.

Corresponding author: lixiaohong668@163.com (X. H. Li).

Co-Corresponding author: caixh1111@163.com (X. H. Cai).

amalgam were measured by a transmission electron microscope JEM-F200 (TEM, JEOL, Tokyo, Japan) with an accelerating voltage of 200 kV. The XPS data were collected with an X-ray photoelectron spectrometer (Thermo Scientific K-Alpha+, ThermoFisher, USA) with a mono Al-Kα excitation source (1486.6eV). The UV-Vis absorption spectra of the PCQDs, Ag/PCQDs, AgHg amalgam were achieved via a UV-Vis spectrometer (Shimadzu, Kyoto, Japan) over the wavelength range from 250 nm to 700 nm (1 nm interval). The fluorescence spectrum of the sample was recorded using a fluorescence spectrophotometer (F-320 Gangdong, Tianjin). The DLS size distribution and zeta potential were collected with a nanometer particle size and Zeta potential analyzer (Malvern Zetasizer Nano ZS90). To prove the accuracy of the method, the concentration of Hg^{2+} in real water samples, saline solution and Hg^{2+} seawater CRM were determined by cold vapour atomic absorption spectrometry (CVAAS) using DMA–80 (Milestone, Italy). Compared with the Ag/PCQDs composite method, the concentration of Hg^{2+} in water samples was determined by CVAAS using DMA-80 (ThermoFisher, USA).

Figure 1S. Effect of pH value of Ag/PCQDs composite to Hg^{2+} detection

Figure 2S. Effect of time of Ag/PCQDs composite to Hg^{2+} detection

Figure 3S. Plot of the intensity for the relative absorption intensity $(A_0 - A)/A_0$ over the concentration of Hg²⁺ in dH₂O solution (λ = 426 nm).

The result of the analysis as follows:

Equation: Y = A +B × X
\nY = 0.0848 × X – 0.01587
\nR = 0.9981
\nS = 0.0848 × 10⁶ K = 3
\n
$$
\delta = \sqrt{\frac{\sum (A_0 - \overline{A}_0)^2}{N - 1}} = 0.00102 \text{ (N = 10)}
$$
\n
$$
LOD = \frac{3\delta}{slope}, \text{LOD} = \text{K} \times \delta / \text{S} = 3.54 \times 10^{-8} \text{ M} = 35.4 \text{ nM}
$$

Figure 4S. Plot of the intensity for the relative absorption intensity $(A_0 - A)/A_0$ over the concentration of Hg²⁺ in 0.6 M NaCl solutions (λ = 426 nm).

The result of the analysis as follows:

Equation: $Y = A + B \times X$ $Y = 0.2218 \times X - 0.09238$ $R = 0.9958$ $S = 0.2218 \times 10^6$ K = 3

Figure 5S. UV–vis absorption values of Ag/PCQDs composite upon different concentrations of Hg²⁺ in the range of 20-200 nM.

Figure 6S. (a) The Zeta potential distribution data of Ag/PCQDs composite (b) Ag/PCQDs composite after addition of Hg^{2+}

Figure 7S. The Ag/CQDs upon different mercury sources (50 μ M) (a) in dH₂O solution (b) in seawater samples