The mineralization ability of chloride-resistant γ-Cu₂(OH)₃Cl Fenton catalyst: effects of cation type, salt concentration and organic pollutants

Hao Wang^{1*}, Hongyou Yin¹, Zeng Zhang¹, Ying Xiong², Yang Li³, Yan Wu¹

1-School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu

610500, China

2-Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gas Field

Company, Chengdu 610500, China

3-Petrochemical Research Institute, PetroChina Co. Ltd, Beijing 102206, China

Figure S1. XRD pattern of γ -Cu₂(OH)₃Cl after soaking with 15000 mg·L⁻¹ NaCl solution.

Figure S2. LSV curves in different systems, a: phenol+ γ -Cu₂(OH)₃Cl +NaCl, b: phenol+ γ -Cu₂(OH)₃Cl +KCl, c: phenol+ γ -Cu₂(OH)₃Cl +MgCl₂, d: phenol+ γ -Cu₂(OH)₃Cl +CaCl₂.

Figure S3. EIS diagrams of various systems, (a) phenol+ γ -Cu₂(OH)₃Cl, (b) phenol+ γ -Cu₂(OH)₃Cl+H₂O₂, (c) phenol+ γ -Cu₂(OH)₃Cl +NaCl, and (d) phenol+ γ -Cu₂(OH)₃Cl +NaCl+H₂O₂.

Table S1 Binding energies of Cu $2p_{3/2}$ and Cu⁺ percentage of catalysts.

Samples –	Binding energy (eV)				- Demonstrate of $Cu^+(0/)$
	Cu^+	Cu^{2+}	Cu ²⁺ sat.	Cu ²⁺ sat.	Percentage of Cu [*] (%)
γ-Cu ₂ (OH) ₃ Cl	934.1	935.5	942.3	944.3	34.0
γ -Cu ₂ (OH) ₃ Cl+H ₂ O ₂	934.4	935.8	942.2	944.2	39.7
+3000 mg·L ⁻¹ NaCl					
γ -Cu ₂ (OH) ₃ Cl+H ₂ O ₂	934.2	935.5	942.1	944.2	39.8
+15000 mg·L ⁻¹ NaCl					
γ -Cu ₂ (OH) ₃ Cl+H ₂ O ₂	934.1	935.5	942.2	944.2	39.8
+15000 mg·L ⁻¹ KCl					
γ -Cu ₂ (OH) ₃ Cl+H ₂ O ₂	934.0	935.5	942.3	944.3	39.9
+15000 mg·L ⁻¹ MgCl ₂					
γ -Cu ₂ (OH) ₃ Cl+H ₂ O ₂	934.1	935.7	942.3	944.4	39.9
$+15000 \text{ mg} \cdot \text{L}^{-1} \text{ CaCl}_2$					

$$\label{eq:GH} \begin{split} \mbox{Figure S4. Cu $2p_{3/2}$ XPS spectra of (a) γ-Cu$_2(OH)_3Cl+$H$_2O$_2+$15000 mg$\cdotL^{-1}$ NaCl, (b) γ-Cu$_2(OH)_3Cl+$H$_2O$_2+$15000 mg$\cdotL^{-1}$ MgCl$_2, (d) γ-Cu$_2(OH)_3Cl+H_2O$_2+$15000 mg\cdotL^{-1} Cu$_2(OH)_3Cl+$H$_2O$_2+$15000 mg$\cdotL^{-1}$ CaCl$_2. \end{split}$$

Figure S5. HPLC chromatograms of phenol mineralization at the reaction time of (A) 1 min and (B) 5 min in (a) saline-free and four saline solutions: (b) NaCl, (c) KCl, (d) MgCl₂ and (e) CaCl₂. Reaction conditions: H_2O_2 dosage 53 mmol·L⁻¹, phenol concentration 100 mg·L⁻¹, pH 6.4, 50 °C and catalyst dosage 0.4 g·L⁻¹.

Figure S6. Cu $2p_{3/2}$ XPS spectra of (a) fresh γ -Cu₂(OH)₃Cl, (b) γ -Cu₂(OH)₃Cl+H₂O₂+3000 mg·L⁻¹ NaCl, (c) γ -Cu₂(OH)₃Cl+H₂O₂+15000 mg·L⁻¹ NaCl.