Supporting Information

Efficient and Reversible Absorption of Low Pressure NH₃ by Functional Type V Deep Eutectic Solvents Based on Phenol and Hydroxylpyridine

Ziyue Zhou, Renjiang Li, Ke Li, Kai Zong, Dongshun Deng*

Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering, Zhejiang

University of Technology, Hangzhou 310014, China

The identification of present mixtures as DESs.

The melting points of 3-HP/PhOH (1:1.5, 1:2, 1:3, 1:5), 3-HP/TMP (1:5), 3-HP/MC (1:5), and PhOH and 2-HP/PhOH (1:5) were determined and presented in the corresponding solid-liquid equilibrium (SLE) as follows according to the literature methods.^{1,2} The red lines were obtained using the melting points and $\Delta_{fus}H$ (the enthalpy of fusion) of the two pure compounds. As can be seen, the melting points of prepared mixtures were far lower than the ideal eutectic point presented as $T_{\rm E, ideal}$. Then, present mixtures can be named as real DESs according to the recommended definition.^{1,2}

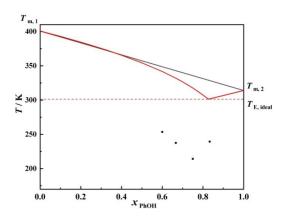


Fig.S1 Schematic representation of the comparison of the SLE of 3-HP/PhOH

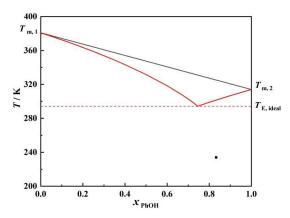


Fig.S2 Schematic representation of the comparison of the SLE of 2-HP/PhOH (1:5)

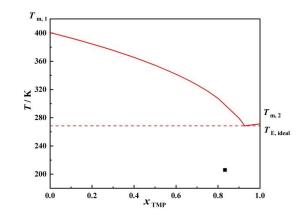


Fig.S3 Schematic representation of the comparison of the SLE of 3-HP/TMP (1:5)

Fig.S4 Schematic representation of the comparison of the SLE of 3-HP/MC (1:5)

Coumpounds	$T_m(\mathbf{K})$	Ref.	$\Delta_{fus}H$ (kJ/mol)	Ref.
MC	284.15	3	10.67	8
PhOH	314.07	4	11.51	8
3-НР	400.15	5	17.70	DSC determination
2-HP	380.65	6	14.78	DSC determination
TMP	271.35	7	15.54	9

Table S1. The melting point and fusion enthalpy of pure compounds.

References

- 1. M. A. R. Martins, S. P. Pinho and J. A. P. Coutinho, J. Solution Chem., 2019, 48, 962-982.
- 2. M. Jablonský and J. Šima, BioResources, 2022, 17, 3880-3882.
- 3. J. Kendall and J. J. Beaver, J. Am. Chem. Soc., 1921, 43, 8, 1853-1867.
- 4. A. E. Hill and W.M. Malisoff, J. Am. Chem. Soc., 1926, 48, 4, 918-927.
- 5. K.W. Anderson, T. Ikawa, R.E. Tundel and S.L. Buchwald, J. Am. Chem. Soc., 2006, **128**, 33, 10694-10695.
- 6. J. H. Boyer and L. R. Morgan Jr., J. Am. Chem. Soc., 1961, 83, 4, 919-921.
- 7. F. Swarts, Bull. Cl. Sci., Acad. R. Belg., 1913, P241-78 CAPLUS.
- 8. NIST Chemistry WebBook, SRD 69. https://webbook.nist.gov/chemistry/cas-ser/.
- 9. K. G. Joback and R. C. Reid, Chem. Eng. Commun., 1987, 57, 233-243.