ZnAl-LDH/MOF-5 heterostructure nanocomposite for photocatalytic

degradation of organic dye under sunlight irradiation

Anindita Chakraborty and Himadri Acharya*

Centre for Soft Matters, Department of Chemistry, Assam University, Silchar-788011, Assam, India.

E-mail: himadriau@yahoo.co.in; Fax: +91 3842 270802; Tel: +91 3842 270848

Supporting information for this article can be found under <u>http://dx.doi.org/</u>

Fig. S1. Energy Dispersive X-Ray Spectroscopy (EDS) elemental mapping analysis of ZnAl-LDH/MOF-5 nanocomposite.

Fig. S2. Band gap values calculated for (a) MOF-5, (b) ZnAl-(BDC) LDH, (c) ZnAl-LDH/MOF-5 nanocomposite.

Fig. S3. Effect of pH on adsorption and degradation processes of methyl orange (MO) dye in presence of ZnAl-LDH/MOF-5 nanocomposite.

Fig. S4. Effect of nanocomposite dosage on (a) adsorption and (b) degradation processes of methyl orange (MO) dye in presence of ZnA1-LDH/MOF-5 nanocomposite.

Fig. S5. Effect of initial concentration of methyl orange (MO) dye on adsorption and degradation processes in presence of ZnAl-LDH/MOF-5 nanocomposite.

Fig. S6. Catalytic methyl orange (MO) dye degradation efficiencies of ZnAl-LDH/MOF-5 nanocomposite in dark and under solar irradiation in presence of H_2O_2 .

Fig. S7. Fluorescence emission spectra of 2-hydroxy-terephthalate, produced during catalysis. (Reaction condition- DST: 0.5 (mM), Catalyst: 100 mgL⁻¹, H_2O_2 : 0.1 (M), Excitation wavelength: 315 nm).

Fig. S8. Post-catalytic FESEM image (a) and PXRD pattern (b) of ZnAl-LDH/MOF-5 nanocomposite.