Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

# **Supporting Information**

# Enhanced photoelectrochemical water oxidation over a surface hydroxylated BiVO<sub>4</sub> photoanode: advantageous charge separation and water dissociation

Yaru Li<sup>a</sup>, Fangxia Xie<sup>a</sup>, Zijun Sun<sup>a</sup>, Zhuobin Yu<sup>b</sup>, Jianxin Liu<sup>a</sup>, Xiaochao Zhang<sup>a</sup>, Yawen Wang<sup>a</sup>, Yunfang Wang<sup>a</sup>, Rui Li<sup>a,c, \*</sup>, Caimei Fan<sup>a, \*</sup>

<sup>a</sup>College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, PR China

<sup>b</sup>Instrumental Analysis Center, Taiyuan University of Technology, Taiyuan 030024, PR

China

<sup>c</sup>College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China

\*Corresponding author

Email address: lirui13233699182@163.com (R. Li); fancm@163.com (C.M. Fan)

#### **Expressions used for the analysis** [1]:

#### Applied bias photo-to-current efficiency (ABPE):

The applied bias photon-to-current efficiency of the different photoanodes was determined using the equation:

$$ABPE(\%) = \frac{J \times (1.23 - E_{\rm b})}{P_{total}} \times 100\%$$
 (E1)

where J is the photocurrent density (mA cm<sup>-2</sup>) obtained from the LSV curve,  $P_{total}$  is the incident light intensity of the solar simulator (120 mW cm<sup>-2</sup>), and  $E_b$  is the applied potential versus RHE (V).

### Incident photon-to-current conversion efficiency (IPCE):

From the region of 420-700 nm excitation wavelengths at 1.23 V vs.RHE, the incident photon-to-current conversion efficiency (IPCE) was evaluated under chopped monochromator with a 300 W Xe lamp as the simulated light source (PLS-SXE 300+, Perfect Light, China) as:

$$IPCE(\%) = \frac{J \times 1240}{\lambda \times P_{\text{light}}} \times 100\%$$
(E2)

where J is the photocurrent density (mA cm<sup>-2</sup>) under illumination at a given wavelength, and  $P_{light}$  is the power density (mW cm<sup>-2</sup>) of monochromatic light acquired at a given wavelength ( $\lambda$ ).

#### Light harvesting efficiencies (LHE):

The efficiency of light harvesting may be represented as:

$$LHE(\lambda) = 1 - 10^{-A(\lambda)}$$
(E3)

where  $A^{(\lambda)}$  is the absorbance at specific wavelength  $\lambda$ .

## The bulk charge separation ( $\eta_{sep}$ ) and surface charge injection efficiency ( $\eta_{inj}$ ):

The measured water splitting photocurrent can be expressed as:

$$J_{PEC} = J_{abs} \bullet \eta_{sep} \bullet \eta_{inj} \tag{E4}$$

 $J_{abs}$  is the photocurrent density (mA cm<sup>-2</sup>) if all absorbed photons can be converted to current. The following equation can be used to estimate  $J_{abs}$ :

$$J_{\rm abs} = J_{\rm max} \bullet LHE \tag{E5}$$

where LHE is light harvesting efficiency, and  $J_{max}$  is maximum photocurrent density (mA cm<sup>-2</sup>) achievable assuming 100% IPCE for photons with energy  $\geq E_g$ .

Surface recombination of the charge carriers may be entirely inhibited in the presence of hole scavenger Na<sub>2</sub>SO<sub>3</sub>, without affecting charge separation in the electrode bulk ( $\eta_{inj}$ =100%). As a result, the  $\eta_{sep}$  and  $\eta_{inj}$  may be computed using the formulae below:

$$\eta_{sep} = \frac{J_{\text{Na}_2\text{SO}_3}}{J_{\text{abs}}} \tag{E6}$$

$$\eta_{\rm inj} = \frac{J_{\rm Na_2SO_4}}{J_{\rm Na_2SO_3}}$$
 (E7)

where  $J_{Na2SO3}$  is the photocurrent density (mA cm<sup>-2</sup>) measured in the electrolyte of 0.1 M Na<sub>2</sub>SO<sub>4</sub> with 0.1 M Na<sub>2</sub>SO<sub>3</sub>, and  $J_{Na2SO4}$  is the photocurrent density (mA cm<sup>-2</sup>) obtained in 0.1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte.

Supplementary figures and tables:



Fig. S1 SEM image of the metal Bi substrate.



Fig. S2 XRD patterns of the prepared samples treated with different concentration NaOH solutions.



Fig. S3 The  $N_2$  adsorption-desorption isotherms and the inset of the related parameters of bare BiVO<sub>4</sub> and BiVO<sub>4</sub>-1-30 photoanodes.



Fig. S4 (a) LSV and (b) ABPE curves performed in the two-electrode configuration, in which the Pt wire is as counter electrode and the bare BiVO<sub>4</sub> and BiVO<sub>4</sub>-1-30 photoanodes are as working electrode, respectively.



Fig. S5 The amount of  $\mathrm{H}_2$  and  $\mathrm{O}_2$  gases generated from the bare  $\mathrm{BiVO}_4$  and  $\mathrm{BiVO}_4\text{-1-}$ 

30 photoanodes at 1.23 V vs. RHE during 5 hours.



Fig. S6 The UV-vis diffuse reflectance spectra (DRS) of bare  $BiVO_4$  and  $BiVO_4$ -1-30

photoanodes.



Fig. S7 LSV curves for sulfite oxidation and H<sub>2</sub>O oxidation measured in the electrolytes of 0.1 M Na<sub>2</sub>SO<sub>4</sub> containing 0.1 M Na<sub>2</sub>SO<sub>3</sub> (broken lines) and without Na<sub>2</sub>SO<sub>3</sub> (solid lines) of bare BiVO<sub>4</sub> and BiVO<sub>4</sub>-1-30 photoanodes.



Fig. S8 Cyclic voltammograms for (a) bare  $BiVO_4$ , (b)  $BiVO_4$ -1-30 photoanodes at different scan rates (10, 20, 30, 40 and 50 mV s<sup>-1</sup>).



Fig. S9 Theoretical models of (a) bare BiVO<sub>4</sub> and (b) hydroxylated BiVO<sub>4</sub>.

Table S1 The PEC water oxidation properties and preparation methods of the reported BiVO<sub>4</sub>-based photoanodes.

| Catalysts                                         | Fabracation method                                                | Electrolyte                              | Performance                                                                                                                                               | References   |
|---------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| BiVO <sub>4</sub>                                 | in-situ hydrothermal                                              | 0.1 M<br>Na <sub>2</sub> SO <sub>4</sub> | J=0.24 mA cm <sup>-2</sup> , $\eta_{sep}$ =16.45%, $\eta_{inj}$ =19.22% at 1.23 V <sub>RHE</sub> ,<br>ABPE=0.014% at 1.05 V <sub>RHE</sub> and IPCE=3.69% | This<br>work |
| Surface hydroxylated<br>BiVO <sub>4</sub>         | in-situ hydrothermal and<br>immersion                             |                                          | J=1.14 mA cm <sup>-2</sup> , $\eta_{sep}$ =28.7%, $\eta_{inj}$ =53.16% at 1.23 V <sub>RHE</sub> ,<br>ABPE=0.049% at 1.09 V <sub>RHE</sub> and IPCE=16%    |              |
| BiVO <sub>4</sub>                                 | repeated spin                                                     | 0.1 M                                    | J=0.18 mA cm <sup>-2</sup> at 1.23 V <sub>RHE</sub>                                                                                                       |              |
| Ag-BiVO4/BiFeO3                                   | coating/calcination procedure and anneal                          | Na <sub>2</sub> SO <sub>4</sub>          | J=0.72 mA cm <sup>-2</sup> at 1.23 V <sub>RHE</sub>                                                                                                       | 2            |
| BiVO <sub>4</sub>                                 | chemical solution                                                 | 0.5 M<br>Na <sub>2</sub> SO <sub>4</sub> | J=0.5 mA cm <sup>-2</sup> , ABPE=0.074% at 0.312 $V_{RHE}$ and IPCE=16.14%                                                                                | - 3          |
| BiVO4/CoNiO2                                      | hydrothermal                                                      |                                          | J=1.16 mA cm <sup>-2</sup> , ABPE=0.163% at 0.312 $V_{RHE}$ and IPCE=34.37%                                                                               |              |
| BiVO <sub>4</sub>                                 | electrodeposition and calcination                                 | 0.2 M<br>Na <sub>2</sub> SO <sub>4</sub> | J=0.35 mA cm <sup>-2</sup> , ABPE=0.028% at 0.9<br>V <sub>RHE</sub> and IPCE=14.7%                                                                        | 4            |
| α-FOOH/BiVO4                                      | electrodeposition,<br>calcination and chemical<br>bath deposition |                                          | J=2.64 mA cm <sup>-2</sup> , ABPE=0.59% at 0.9 V <sub>RHE</sub> and<br>IPCE=62.7%                                                                         |              |
| BiVO <sub>4</sub>                                 |                                                                   |                                          | J=0.18 mA cm <sup>-2</sup> , $\eta_{sep}$ =18.2%, $\eta_{inj}$ <10% at 1.23 V <sub>RHE</sub> ,<br>ABPE=0.03% at 0.8 V <sub>RHE</sub> and IPCE=62.7%       |              |
| BiVO <sub>4</sub> /SnO <sub>2</sub>               | multistep<br>electrodeposition and<br>annealed                    | 0.1 M PBS                                | J=0.56 mA cm <sup>-2</sup> , ABPE=0.08% at 0.8 $V_{\rm RHE}$ and IPCE=62.7%                                                                               | 5            |
| NiWO4/BiVO4/SnO2                                  |                                                                   |                                          | J=0.93 mA cm <sup>-2</sup> , $\eta_{sep}$ =23%, $\eta_{inj}$ =30% at 1.23 V <sub>RHE</sub> ,<br>ABPE=0.21% at 0.8 V <sub>RHE</sub> and IPCE=62.7%         |              |
| BiVO <sub>4</sub>                                 | electrodeposition and anneal transformation                       |                                          | J=0.47 mA cm <sup>-2</sup> , $\eta_{sep}$ =40%, $\eta_{inj}$ =18% at 1.23 V <sub>RHE</sub> ,<br>ABPE=0.11% at 1.03 V <sub>RHE</sub> and IPCE=10%          |              |
| BiVO <sub>4</sub> /Bi <sub>2</sub> S <sub>3</sub> | high temperature ion<br>exchange and anneal                       | 0.5 M<br>Na <sub>2</sub> SO <sub>4</sub> | J=0.92 mA cm <sup>-2</sup> , $\eta_{sep}$ =47%, $\eta_{inj}$ =35% at 1.23 V <sub>RHE</sub> ,<br>ABPE=0.21% at 1.07 V <sub>RHE</sub> and IPCE=21%          | 6            |
| BiVO4/Bi2S3/NiCoO2                                | drop casting and anneal                                           |                                          | J=2.58 mA cm-2, $\eta_{sep}$ =54%, $\eta_{inj}$ =80% at 1.23 V <sub>RHE</sub> ,<br>ABPE=0.62% at 1.11 V <sub>RHE</sub> and IPCE=42%                       |              |

| Catalysts                                         | Fabracation method                                          | Application field                                                    | References |
|---------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|------------|
| $\operatorname{BiVO}_4$                           | post-synthetic NaOH<br>immersion                            | photoelectrochemical water<br>oxidation                              | This work  |
| α-Fe <sub>2</sub> O <sub>3</sub>                  | ultrasonically treating in<br>water                         | photoelectrochemical water<br>oxidation                              | 7          |
| TiO <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub> | plasma treating                                             | photo-Fenton<br>degradation of tetracycline                          | 8          |
| g-C <sub>3</sub> N <sub>4</sub>                   | high temperature heating<br>with mixed NaOH                 | photocatalytic degradation<br>of phenol                              | 9          |
| g-C <sub>3</sub> N <sub>4</sub>                   | ultrasonically treating in $H_2O_2$ solution                | photocatalytic CO <sub>2</sub><br>reduction                          | 10         |
| Zn <sub>2</sub> GeO <sub>4</sub>                  | hydrothermally treating in<br>NaOH solution                 | photocatalytic conversion<br>of CO <sub>2</sub> into CH <sub>4</sub> | 11         |
| polymeric carbon<br>nitride                       | hydrothermal route in<br>water                              | photocatalytic H <sub>2</sub> evolution                              | 12         |
| SiO <sub>2</sub> /g-C <sub>3</sub> N <sub>4</sub> | heating reflux in H <sub>2</sub> O <sub>2</sub><br>solution | photocatalytic degradation<br>rate of rhodamine B                    | 13         |

Table S2 The reported typically surface hydroxylation methods.

### References

[1] X. Lv, X. Xiao, M. Cao, Y. Bu, C. Wang, M. Wang and Y. Shen, Appl. Surf. Sci., 2018, **439**, 1065-1071.

[2] T. Soltani and B. Lee, Sci. Total Environ., 2020, 736, 138640.

[3] G. Fang, Z. Liu, C. Han, X. Ma, H. Lv, C. Huang, Z. Cheng, Z. Tong and P. Wang, Chem. Commun., 2020, **56**, 9158.

[4] W. Zhang, J. Ma, L. Xiong, H. Jiang and J. Tang, ACS Appl. Energy Mater., 2020, 3, 5927-5936.

[5] M. Shaddad, P. Arunachalam, M. Hezam and A. Al-Mayouf, Catalysts, 2019, 9, 879.

[6] S. Majumder, M. Gu and K. Kim, Appl. Surf. Sci., 2022, 574, 151562.

[7] C. Tang, B. Sun, M. Li, J. Zhang, X. Fan, F. Gao, Y. Tong, L. Dong and Y. Li, J. Mater. Chem. A, 2019, 7, 8050.

[8] Y. Li, Q. Zhang, Y. Lu, Z. Song, C. Wang, D. Li, X. Tang and X. Zhou, Ceram. Int., 2022, 48, 1306-1313.

[9] J. Ma, C. Liang, H. Li, H. Xu, Y. Hua and C. Wang, Appl. Surf. Sci., 2021, 546, 149085.

[10] I. Khan, X. Chu, I. Khan, H. Liu, W. Li, L. Bai and L. Jing, Mater. Res. Bull., 2020, 130, 110926.

[11] S. Yan, J. Wang, Z. Zou and Dalton Trans., 2013, 42, 12975.

[12] S. Yu, J. Li, Y. Zhang, M. Li, F. Dong, T. Zhang and H. Huang, Nano Energy, 2018, **50**, 383-392.

[13] S. Sun, C. Li, Z. Sun, J. Wang, X. Wang and H. Ding, Chem. Eng. J., 2021, 416, 129107.