Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## Supporting Information

## FAPbBr<sub>3</sub> Perovskite Nanocrystals Decorated on Graphitic Carbon Nitride (g-C<sub>3</sub>N<sub>4</sub>) Sheet for Interfacial Hole Transfer

Sumit Kumar<sup>a</sup>, Abha Jha<sup>a</sup> and Prasenjit Kar<sup>a\*</sup>

Department of Chemistry

Indian Institute of Technology Roorkee, Uttarakhand, India

Corresponding Email address: kar.prasen@gmail.com, prasenjit.kar@cy.iitr.ac.in

## Content

- Fig. S1 PL spectra of FAPbBr<sub>3</sub> perovskite nanocrystals with solvent (0  $\mu$ L to 620  $\mu$ L).
- Fig. S2 FT-IR spectra of PNC@g-C<sub>3</sub>N<sub>4</sub> nanocomposites, PNC and g-C<sub>3</sub>N<sub>4</sub>.
- Fig. S3 XPS analysis of PNC.
- Fig. S4 XPS analysis of PNC@g-C<sub>3</sub>N<sub>4</sub>.



Fig. S1. (a) PL spectra of FAPbBr<sub>3</sub> perovskite nanocrystals with solvent (0  $\mu$ L to 620  $\mu$ L) show that no significant changes were observed. This represents that g-C<sub>3</sub>N<sub>4</sub> is responsible for quenching the fluorescence of perovskite nanoparticle, (b & d) Fluorescence quenching of PNC in presence of (b) 620  $\mu$ L of the g-C<sub>3</sub>N<sub>4</sub> solution, (d) with 300  $\mu$ L of a g-C<sub>3</sub>N<sub>4</sub> solution, (c) No possibility of FRET.



Fig. S2. FT-IR spectra of PNC@g-C3N4 nanocomposites, PNC and g-C3N4.

The FTIR spectra of FAPbBr<sub>3</sub>@g-C<sub>3</sub>N<sub>4</sub> and FAPbBr<sub>3</sub> show a negligible shift in stretching vibrational frequency. However, an additional peak present at 1313.27 cm<sup>-1</sup> indicates the g- $C_3N_4$  environment present around the FAPbBr<sub>3</sub> perovskite nanoparticle.



Fig. S3 XPS analysis of PNC.



Fig. S4 XPS analysis PNC@g-C<sub>3</sub>N<sub>4</sub>.