Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

A turn-on bis-BODIPY chemosensor for copper recognition based on *in-situ* generation of benzimidazole–triazole receptor and its applications in bioimaging

Worakrit Saiyasombat,^a Sopon Nuchpun,^c Kanlaya Prapainop Katewongsa,^c Soraya Pornsuwan,^a Jan J. Weigand,^d and Supavadee Kiatisevi^{*a,b}

^a Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Rd, Ratchathewi, Bangkok 10400, Thailand.

^b Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand.

^o Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd, Ratchathewi, Bangkok 10400, Thailand.

^d Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.

*Corresponding author: Supavadee Kiatisevi, E-mail address: <u>supavadee.mon@mahidol.edu</u>

Contents

1. Synthesis and Characterization	S2
1a. Synthesis	S2
1b. NMR Spectra	S3
1c. Mass spectra	S7
1d. ESR spectra	S8
2. Photophysical and sensing studies	S8
2a. Absorption studies of BODIPY-NN in the presence of different metal ions	S8
2b. Determination of fluorescence quantum yield	S9
2c. Calculation of limit of detection	S10
2d. Time-dependent fluorescence change studies	S10
2e. DFT calculation	S11
2f. Application in real water samples	S19
2g. Cell imaging studies	S19
3. Comparison of BODIPY-NN to other recently reported fluorescent Cu(II) probes	S22
4. References	S24

1. Synthesis and Characterization

1a. Synthesis

Scheme 1. Synthesis of BODIPY-NN.

BODIPY-NN

In the schlenk tube, **1** (140 mg, 0.46 mmol) and **2** (40 mg, 0.22 mmol) were stirred in 5 mL of MeCN at room temperature under inert atmosphere. To this mixture was added 10 mol% of CuI and 40 mol% of Et₃N. The reaction mixture was stirred for 18 h, poured into water, and extracted with 3×30 mL CH₂Cl₂. The organic layer was then collected, washed with brine, and dried over anhydrous Na₂SO₄. After solvent removal, the crude product was purified by column chromatography using a gradient elution (5–30% EtOAc in CH₂Cl₂) containing 1% of Et₃N. **BODIPY-NN** was obtained as a red solid in 63% yield (110 mg, 0.140 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.38 (s, 2H), 6.71–6.68 (m, 2H), 6.63–6.59 (m, 2H), 6.08 (s, 4H), 5.77 (s, 4H), 4.33 (s, 4H), 3.90 (br s, 2H), 2.54 (s, 12H), 2.17 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 157.80, 146.45, 141.59, 136.97, 132.39, 130.04, 123.16, 120.77, 120.01, 113.20, 45.73, 40.41, 15.85, 14.91. HRMS (ESI) m/z: calcd. for C₄₀H₄₅B₂F₄N₁₂ [M+H]⁺, 791.4007; found, 791.4010.

Figure S2. ¹³C NMR spectrum (100 MHz) of BODIPY-NN in CDCl₃.

Figure S3. ¹⁹F NMR spectrum (376 MHz) of BODIPY-NN in CDCI₃.

Figure S4. ¹¹B NMR spectrum (128 MHz) of BODIPY-NN in CDCI₃.

Figure S5. ¹H NMR spectrum (400 MHz) of BTB in CDCI₃.

Figure S6. ¹³C NMR spectrum (100 MHz) of BTB in CDCl₃.

Figure S7. ¹⁹F NMR spectrum (376 MHz) of BTB in CDCl₃.

Figure S8. ¹¹B NMR spectrum (128 MHz) of BTB in CDCl₃.

1c. Mass spectra

Figure S9. ESI-MS spectra of (a) BODIPY-NN, (b) BTB, and (c) BODIPY-NN + CuCl₂ (1 equiv.).

Figure S10. ESR spectra of Cu-BTB complex (a) in CH₃CN solution and (b) in solid form.

2. Photophysical and sensing studies

2a. Absorption studies of BODIPY-NN in the presence of different metal ions

Figure S11. Absorption spectra of **BODIPY-NN** (5 µM) upon addition of different metal ions (10 equiv.) in THF/water (9:1).

2b. Determination of fluorescence quantum yield

Emission quantum yield was calculated by the following equation: $\Phi_{\rm x} = \Phi_{\rm ST} \left(\frac{Grad_{\rm X}}{Grad_{\rm ST}}\right) \left(\frac{\eta_{\rm X}^2}{\eta_{\rm ST}^2}\right)$

where the subscripts ST and X denote standard and test respectively, Φ is the fluorescence quantum yield, Grad stands for the gradient from the plot of integrated fluorescence intensity vs absorbance, and η is the refractive index of the solvent. Fluorescein in 0.1 M NaOH (Φ = 0.95) was used as the standard.

Figure S12. Plots of integrated fluorescence intensity of (a) fluorescein, (b) **BODIPY-NN** in the presence of 15 equiv. of Cu²⁺, and (c) **BODIPY-NN** against absorbance.

2c. Calculation of limit of detection

The limit of detection (LOD) of the fluorescent probe **BODIPY-NN** for Cu²⁺ was determined from the following equation: LOD = $3\sigma/K$ where σ is the standard deviation of the blank solution and K is the slope of the calibration curve.

Figure S13. Linear relationship between fluorescence intensities of BODIPY-NN and concentrations of Cu²⁺.

2d. Time-dependent fluorescence change studies

Figure S14. Fluorescence intensity changes of BODIPY-NN (0.5 µM) versus time in the presence of 1 equiv. of Cu²⁺.

2e. DFT calculation

Figure S15. Optimized structures of (a) BODIPY-NN and (b) BTB by B3LYP/6-31G(d).

Table S1. Calculated excitation energies (in eV and nm), oscillator strengths (f), and molecular orbital (MO)
compositions for the low-lying excited states of BODIPY-NN and BTB using CAM-B3LYP/6-31G(d).

Compound State		MO composition	Excitation energy (eV)	λ _{abs} (nm)	f
	S1	H–2→LUMO (16%) H–2→L+1 (33%) H–1→ LUMO (33%) H–1→ L+1 (16%)	2.797	443.33	0.7041
BODIPY-NN	S2	H-2→LUMO (43%) H–2→L+1 (44%) H–1→ LUMO (6%) H–1→ L+1 (6%)	2.800	442.74	0.5210
DTD	S1	H−1→ LUMO (63%) HOMO→L+1 (35%)	2.783	445.46	0.1152
DIB	S2	H–1→ LUMO (35%) HOMO→L+1 (63%)	2.800	442.80	1.1075

L+2 0.997 eV 0.111 eV L+1 0.997 eV 0.111 eV L+1 0.997 eV 0.111 eV L+1 0.997 eV 0.111 eV LUMO 0.997 eV 0.111 eV LUMO 0.997 eV -1.791 eV LUMO 0.117 eV -1.791 eV HOMO 0.117 eV -1.817 eV HOMO 0.117 eV -6.849 eV H-1 0.117 eV -6.849 eV H-1 0.117 eV -6.849 eV H-2 0.117 eV 0.117 eV		BODIPY-NN	ВТВ	
0.997 eV 0.111 eV L+1 Image: Constraint of the second se	L+2			
L+1 Image: Constraint of the second		0.997 eV	0.111 eV	
-1.780 eV -1.791 eV LUMO →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→	L+1			
LUMO -1.780 eV -1.817 eV HOMO -1.817 eV -6.849 eV -6.849 eV -6.849 eV -6.846 eV -6.866 eV H-2 -6.846 eV -6.846 eV -6.846 eV -6.866 eV		–1.780 eV	–1.791 eV	
HOMO →1.780 eV −1.817 eV HOMO →1.780 eV →1.817 eV HOMO →1.780 eV →1.817 eV -6.840 eV →1.817 eV →1.817 eV H-1 →1.780 eV →1.817 eV H-1 →1.780 eV →1.817 eV H-1 →1.780 eV →1.817 eV H-1 →1.817 eV →1.817 eV H-1 →1.817 eV →1.817 eV H-1 →1.817 eV →1.817 eV H-2 →1.817 eV →1.817 eV	LUMO			
HOMO José de la construcción de la cons		–1.780 eV	–1.817 eV	
H-1 →-6.579 eV →-6.849 eV H-1 →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→	номо			
H−1 Image: Constraint of the second secon		–6.579 eV	-6.849 eV	
−6.846 eV −6.866 eV H−2 Image: Constraint of the second secon	H–1			
H-2		–6.846 eV	–6.866 eV	
-6.846 eV -7.354 eV	H–2	-6.846 eV	-7.354 eV	
-6.846 eV -7.354 eV		-6.846 eV	-7.354 eV	

 Table S2.
 Frontier molecular orbitals (MOs), MO energies of BODIPY-NN and BTB.

Cartesian coordinates of optimized geometries

BODIPY-NN

F	8.4196790000	-2.3492310000	1.1989490000
F	6.4234400000	-2.1687880000	2.3069480000
F	-6.4258610000	2.1689710000	2.3070050000
F	-8.4214370000	2.3484710000	1.1976580000
Ν	7.5086540000	-0.1394740000	1.5630360000
Ν	6.4633040000	-1.7043310000	-0.0661720000
Ν	4.5804390000	2.3774490000	-0.7493570000
Ν	4.3614990000	3.7130900000	-0.7151030000
Ν	3.1203480000	3.8962370000	-0.3538380000
Ν	-3.1193020000	-3.8955380000	-0.3544280000
Ν	-4.3603280000	-3.7124730000	-0.7161900000
Ν	-4.5797090000	-2.3768800000	-0.7492680000
Ν	-6.4638380000	1.7045240000	-0.0661290000
Ν	-7.5096500000	0.1391470000	1.5622850000
С	6.0616080000	-0.6068920000	-0.8361790000
С	6.3700030000	0.6993290000	-0.4100100000
С	7.0958470000	0.9367950000	0.7676020000
С	7.5621960000	2.1464440000	1.3977130000
С	8.2294730000	1.7439140000	2.5459750000
Н	8.7111680000	2.3933890000	3.2656600000
С	8.1826240000	0.3364350000	2.6261130000
С	8.7618320000	-0.5490780000	3.6798200000
Н	7.9848530000	-1.1866400000	4.1145640000
Н	9.2233460000	0.0478840000	4.4702600000
Н	9.5131950000	-1.2191780000	3.2485530000
С	7.4323980000	3.5801020000	0.9700180000
Н	8.0099100000	3.7898560000	0.0592530000
Н	7.8296540000	4.2314410000	1.7543530000
н	6.3988820000	3.8828310000	0.7748250000
С	6.0584760000	-2.8373560000	-0.6706650000
С	5.3810820000	-2.5024230000	-1.8601240000
Н	4.9469910000	-3.2128500000	-2.5519400000

С	5.3680320000	-1.1194600000	-1.9907710000
С	6.3200880000	-4.1946730000	-0.1055500000
Н	7.3957570000	-4.3607220000	0.0131710000
Н	5.9045930000	-4.9671650000	-0.7573190000
Н	5.8762160000	-4.2875560000	0.8915230000
С	4.7398530000	-0.4094790000	-3.1586680000
Н	3.9767550000	0.3194330000	-2.8632640000
Н	4.2465180000	-1.1416200000	-3.8046430000
Н	5.4811370000	0.1143420000	-3.7760400000
С	5.8714030000	1.8737070000	-1.2271620000
Н	6.5527770000	2.7196370000	-1.1755200000
Н	5.7761130000	1.5998070000	-2.2768290000
С	3.4537710000	1.6987280000	-0.4092860000
Н	3.4099950000	0.6218810000	-0.3789810000
С	2.5233180000	2.6846350000	-0.1562950000
С	1.0824260000	2.5750120000	0.2813580000
Н	0.9948170000	2.8767960000	1.3321640000
Н	0.4819450000	3.2936330000	-0.2870190000
Ν	0.4811900000	1.2554500000	0.1621710000
Н	0.8619490000	0.5865710000	0.8263920000
С	0.2603830000	0.6620860000	-1.0972690000
С	0.4783400000	1.3094810000	-2.3166510000
Н	0.8660800000	2.3225300000	-2.3275890000
С	0.2288020000	0.6556000000	-3.5286330000
Н	0.4095130000	1.1776240000	-4.4641970000
С	-0.2273780000	-0.6581370000	-3.5281460000
Н	-0.4079600000	-1.1808910000	-4.4633280000
С	-0.4770810000	-1.3110960000	-2.3157070000
Н	-0.8647590000	-2.3241770000	-2.3259200000
С	-0.2593500000	-0.6627340000	-1.0967890000
Ν	-0.4803800000	-1.2551130000	0.1630230000
Н	-0.8605600000	-0.5855530000	0.8268800000
С	-1.0822240000	-2.5743060000	0.2832540000
н	-0.9954240000	-2.8748450000	1.3344850000

Н	-0.4816990000	-3.2938840000	-0.2838620000
С	-2.5228180000	-2.6839320000	-0.1553350000
С	-3.4534710000	-1.6980960000	-0.4078980000
Н	-3.4101260000	-0.6212620000	-0.3764850000
С	-5.8705430000	-1.8731750000	-1.2274570000
Н	-6.5518400000	-2.7192100000	-1.1763450000
Н	-5.7748560000	-1.5989480000	-2.2770040000
С	-6.3696810000	-0.6990690000	-0.4102380000
С	-6.0613620000	0.6072890000	-0.8360320000
С	-7.0960260000	-0.9369040000	0.7669880000
С	-7.5622720000	-2.1467730000	1.3967240000
С	-8.2303350000	-1.7445910000	2.5446580000
Н	-8.7121620000	-2.3943160000	3.2640290000
С	-8.1840830000	-0.3371040000	2.6249300000
С	-8.7642180000	0.5481370000	3.6783640000
Н	-7.9877210000	1.1860270000	4.1134790000
Н	-9.2258620000	-0.0490370000	4.4685650000
Н	-9.5156540000	1.2179120000	3.2467300000
С	-7.4315910000	-3.5803460000	0.9690200000
Н	-8.0089960000	-3.7904370000	0.0582560000
Н	-7.8284270000	-4.2319450000	1.7533540000
Н	-6.3979140000	-3.8824520000	0.7737930000
С	-5.3670940000	1.1201950000	-1.9900620000
С	-5.3805280000	2.5031330000	-1.8591950000
Н	-4.9461430000	3.2137770000	-2.5506050000
С	-6.0588450000	2.8377300000	-0.6701670000
С	-4.7379330000	0.4105680000	-3.1576380000
Н	-3.9750540000	-0.3184250000	-2.8618710000
Н	-4.2440900000	1.1429020000	-3.8030110000
Н	-5.4787030000	-0.1130910000	-3.7757700000
С	-6.3210040000	4.1948910000	-0.1049270000
Н	-7.3966660000	4.3599670000	0.0150840000
Н	-5.9069360000	4.9676730000	-0.7572610000
н	-5.8759970000	4.2883010000	0.8916100000

В	7.2222940000	-1.6455340000	1.2930930000
в	-7.2237550000	1.6453440000	1.2926010000

втв

F	8.0796900000	-2.2129550000	-0.4974130000
F	7.5460530000	-0.1334030000	-1.2938690000
F	-4.2274740000	-3.8871150000	-0.3399760000
F	-6.1152440000	-4.0551840000	0.9443160000
Ν	5.8767120000	-1.8795360000	-1.4329460000
Ν	6.5037610000	-0.8782950000	0.7586890000
Ν	1.9788280000	-0.5255660000	0.3819390000
Ν	0.7145810000	-0.7261550000	-0.0618530000
Ν	0.1882900000	0.4470460000	-0.2830030000
Ν	-3.4852150000	3.5357100000	-1.3661880000
Ν	-4.5708050000	3.1430020000	-0.7602790000
Ν	-4.2815340000	1.9764740000	-0.1293310000
Ν	-4.5314860000	-2.3032790000	1.4625540000
Ν	-5.9378510000	-2.1930140000	-0.5878660000
С	5.1795830000	-1.0272450000	1.1850430000
С	4.2219360000	-1.5859660000	0.3170920000
С	4.5620970000	-2.0229290000	-0.9721090000
С	3.7989250000	-2.6481740000	-2.0240630000
С	4.6865160000	-2.8447130000	-3.0717570000
н	4.4553080000	-3.2935730000	-4.0292390000
С	5.9559650000	-2.3649520000	-2.6851250000
С	7.2230930000	-2.3620780000	-3.4745890000
н	7.6164370000	-1.3439440000	-3.5620510000
н	7.0538000000	-2.7718050000	-4.4732980000
н	7.9925140000	-2.9534840000	-2.9668340000
С	2.3579570000	-3.0696050000	-2.0651970000
н	2.1510520000	-3.8925350000	-1.3674180000
н	2.1140340000	-3.4354940000	-3.0670070000
н	1.6607510000	-2.2603480000	-1.8269460000
С	7.2262050000	-0.3258870000	1.7513780000

С	6.3830370000	-0.1024520000	2.8586720000
н	6.6926210000	0.3311880000	3.8009360000
С	5.1022090000	-0.5312400000	2.5356350000
С	8.6832140000	-0.0262440000	1.6220520000
н	9.2473420000	-0.9426950000	1.4189240000
н	9.0620680000	0.4351130000	2.5373200000
н	8.8620460000	0.6468220000	0.7769870000
С	3.9452540000	-0.4632070000	3.4942940000
н	3.0843970000	0.0850590000	3.0952650000
н	4.2597090000	0.0534580000	4.4059520000
н	3.5947840000	-1.4587350000	3.7967210000
С	2.7834850000	-1.6874200000	0.7809090000
н	2.2800150000	-2.5496210000	0.3504580000
н	2.7322880000	-1.7894940000	1.8636780000
С	2.2636030000	0.7956960000	0.4491530000
н	3.2161630000	1.1913380000	0.7613710000
С	1.1052500000	1.4177860000	0.0158360000
С	0.8698240000	2.8523820000	-0.0678430000
Ν	1.6324680000	3.7220560000	0.5668400000
С	1.0946010000	4.9581730000	0.2632780000
С	1.5016080000	6.2394710000	0.6614870000
Н	2.3679310000	6.3632430000	1.3042020000
С	0.7648030000	7.3271160000	0.2077090000
Н	1.0572820000	8.3318510000	0.5004440000
С	-0.3638340000	7.1561890000	-0.6218470000
Н	-0.9214240000	8.0308180000	-0.9452760000
С	-0.7885490000	5.8942770000	-1.0283230000
Н	-1.6766600000	5.7613750000	-1.6380970000
С	-0.0348560000	4.8073280000	-0.5762720000
Ν	-0.1560430000	3.4419080000	-0.7889400000
С	-1.1140130000	2.8177360000	-1.7080970000
н	-0.7027880000	1.8565270000	-2.0141390000
н	-1.1893540000	3.4618030000	-2.5894160000
С	-2.4862760000	2.6361390000	-1.1316920000

С	-2.9874760000	1.6265960000	-0.3348600000
н	-2.5345140000	0.7283240000	0.0541860000
С	-5.3179580000	1.3424280000	0.6920690000
Н	-6.2612320000	1.7561220000	0.3421670000
н	-5.1918650000	1.6617740000	1.7254010000
С	-5.3010130000	-0.1690870000	0.5924430000
С	-4.5807770000	-0.9078680000	1.5502280000
С	-5.9837950000	-0.7990280000	-0.4597250000
С	-6.7942770000	-0.2901990000	-1.5376270000
С	-7.1925910000	-1.3995640000	-2.2699920000
Н	-7.8145280000	-1.3904530000	-3.1559320000
С	-6.6555320000	-2.5559410000	-1.6668310000
С	-6.8154170000	-3.9787920000	-2.0907220000
Н	-5.8375630000	-4.4396580000	-2.2649180000
Н	-7.4126240000	-4.0418650000	-3.0037020000
Н	-7.3012050000	-4.5617220000	-1.3008170000
С	-7.2048980000	1.1160740000	-1.8676010000
Н	-7.8879340000	1.5306710000	-1.1135800000
н	-7.7421520000	1.1245130000	-2.8207460000
н	-6.3613040000	1.8077720000	-1.9534780000
С	-3.8152120000	-0.5199380000	2.7069880000
С	-3.3394380000	-1.7005200000	3.2630580000
н	-2.7223570000	-1.7860120000	4.1483980000
С	-3.7928730000	-2.7817040000	2.4811930000
С	-3.5309230000	0.8384610000	3.2855830000
н	-3.0888630000	1.5299480000	2.5597720000
Н	-2.8211420000	0.7402870000	4.1124560000
н	-4.4311480000	1.3162320000	3.6936190000
С	-3.5388500000	-4.2397690000	2.6800860000
Н	-4.4837480000	-4.7821540000	2.7897590000
Н	-2.9231620000	-4.4040170000	3.5679950000
Н	-3.0334950000	-4.6632140000	1.8056550000
В	7.0695140000	-1.2661680000	-0.6410610000
в	-5.2003680000	-3.1810210000	0.3624430000

2f. Application in real water samples

Figure S16. Visual tests were performed on **BODIPY-NN**. Blank solution contains 0.5 mL of **BODIPY-NN** (5 μ M) in THF and 0.5 mL of real water samples. Test solution contains 0.5 mL of **BODIPY-NN** (5 μ M) in THF and 0.5 mL of copper(II)chloride in real water samples (31.5 μ M).

Figure S17. Viability of cells after incubation with different concentrations of **BODIPY-NN** for 24 h. (A) human epidermoid squamous carcinoma cell line (A431 cells), (B) human colorectal adenocarcinoma cell line (Caco-2 cells), (C) human triple-negative breast cancer cell line (MDA-MB-231 cells) and (D) human breast cancer cell line (MCF-7 cells). Data are represented as mean \pm standard deviation (SD). N = 2.

2g. Cell imaging studies

Figure S18. Confocal Laser Scanning Microscope (FV10i-DOC) images of MCF-7 cells: (A-C) images of cells after 2 h incubation with 0.5% DMSO; (D-F) images of cells after 2 h incubation with 50 μ M Cu²⁺; (G-I) images of cells after 2 h incubation with 20 μ M BODIPY-NN; and (J-L) images of cells after 2 h incubation with 20 μ M BODIPY-NN followed by the addition of 50 μ M Cu²⁺. (A, D, G, J) are blue fluorescence of MCF-7 cells nuclei stained with DAPI. (B, E, H, K) are green fluorescence of BODIPY-NN. (C, F, I, L) are combined images of DAPI and BODIPY-NN. Scale bars represent 50 μ m.

Figure S19. Confocal Laser Scanning Microscope images of MCF-7 cells: (A-C) images of cells after 2 h incubation with 0.5% DMSO; (D-F) images of cells after 2 h incubation with **5 \muM Cu²⁺**; (G-I) images of cells after 2 h incubation with **0.5 \muM BODIPY-NN**; and (J-L) images of cells after 2 h incubation with **0.5 \muM BODIPY-NN**; and (J-L) images of cells after 2 h incubation with **0.5 \muM BODIPY-NN**; followed by the addition of **5 \muM Cu²⁺** for 30 min. Notes: **BODIPY-NN** is green, while nuclei of the cells were blue stained using DAPI. (A, D, G, J) are blue fluorescence of MCF-7 nuclei. (B, E, H, K) are green fluorescence of **BODIPY-NN**. (C, F, I, L) are combined images of blue and green fluorescence. Scale bars represent 50 μ m.

3. Comparison of BODIPY-NN to other recently reported fluorescent Cu(II) probes

G

н

NH

Probe	$\lambda_{Ex}/\lambda_{Em}$ (nm)	Media	Roles of Cu ²⁺	LOD (µM)	Ref.
Α	350/484	DMSO/HEPES, (0.2/9.8, v/v)	catalyst for cyclization	100	1
B 452/482		MeCN/phosphate buffer, (5/5, v/v)	catalyst for hydrolysis	0.050	2
С	350/510	MeCN	chelating agent	0.370	3
D	405/455	MeCN/HEPES, (0.6/9.4, v/v)	chelating agent	0.650	4
E	580/610	DMSO/H ₂ O, (1/9, v/v)	catalyst for C-O cleavage	0.054	5
F	515/585	MeCN/HEPES, (2/3, v/v)	chelating agent /ring-opening catalyst	0.110	6
G	520/617	MeCN/H ₂ O, (4/1, v/v)	chelating agent	0.280	7
Н	375/ 455	MeCN/H ₂ O, (3/1 v/v)	chelating agent	0.640	8
I	325/403	MeCN/H ₂ O, (1/1 v/v)	chelating agent	0.593	9
BODIPY-NN	470/529	THF/H2O, (9/1, v/v)	catalyst for cyclization/ chelating agent	0.085	This work

Table S3. Comparison of BODIPY-NN to other recently reported fluorescent probes for Cu(II) detection.

4. References

- 1 M. Gupta, A. Balamurugan and H. II Lee, Sens. Actuators, B, 2015, **211**, 531–536.
- 2 Y. Li, H. Zhou, S. Yin, H. Jiang, N. Niu, H. Huang, S. A. Shahzad and C. Yu, Sens. Actuators, B, 2016, 235, 33–38.
- 3 Z. Shi, Y. Tu, R. Wang, G. Liu and S. Pu, *Dyes Pigm.*, 2018, **149**, 764–773.
- 4 S. Anbu, A. Paul, K. Surendranath, A. Sidali and A. J. L. Pombeiro, J. Inorg. Biochem., 2021, 220, 111466.
- 5 K. H. Nguyen, Y. Hao, K. Zeng, X. Wei, S. Yuan, F. Li, S. Fan, M. Xu and Y. N. Liu, *J. Photochem. Photobiol.*, *A*, 2018, **358**, 201–206.
- 6 B. Zhang, Q. Diao, P. Ma, X. Liu, D. Song and X. Wang, Sens. Actuators, B, 2016, 225, 579–585.
- 7 H. Ding, B. Li, S. Pu, G. Liu, D. Jia and Y. Zhou, Sens. Actuators, B, 2017, 247, 26–35.
- 8 J. Nootem, R. Daengngern, C. Sattayanon, W. Wattanathana, S. Wannapaiboon, P. Rashatasakhon and K. Chansaenpak, *J. Photochem. Photobiol.*, *A*, 2021, **415**, 1010–6030.
- 9 L. Naik, C. V. Maridevarmath, M. S. Thippeswamy, H. M. Savanur, I. A. M. Khazi and G. H. Malimath, *Mater. Chem. Phys.*, 2021, **260**, 124063.