Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

In-situ formation of Cu₂O decorated CuZnAl-layered double hydroxides heterostructured photocatalysts for enhancing degradation of tetracycline under visible light

Xiangkun Ran^a, Tian Sun^a, Runze Zhou^a, Chaojun Wei^a, Wa Gao^{ab*}, Hanqing Zhao^{a*} a Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China

b Beijing Key Laboratory of Detection and Control of Spoilage Microorganisms and Pesticide Residues in Agricultural Products, Beijing University of Agriculture, Beijing 102206, China

*Corresponding authors

E-mails: gaowa@bua.edu.cn (W. Gao), zhaohanqingbua@163.com (H. Zhao)

Fig. S1 (A) SEM images of Cu₂O, (B) as-synthesized CuZnAl-LDHs and (C) Cu₂O/CuZnAl-LDHs.

Fig. S2 TEM images of as-synthesized CuZnAl-LDHs.

Fig. S3 TEM image of Cu₂O sample.

Fig. S4 N₂ adsorption-desorption isotherms and corresponding pore size distribution curves (inset) of CuZnAl-LDHs.

Fig. S5 N₂ adsorption-desorption isotherms and corresponding pore size distribution curves (inset) of Cu₂O.

Fig. S6 N₂ adsorption-desorption isotherms and corresponding pore size distribution curves (inset) of Cu₂O/CuZnAl-LDHs.

Sample	BET surface area	Pore volume	Average pore size
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)
CuZnAl-LDHs	95.4	0.54	18.42
Cu ₂ O	26.2	0.065	7.43
Cu ₂ O/CuZnAl-LDHs	89.6	0.38	14.57

Table S1 BET results for CuZnAl-LDHs, Cu₂O, and Cu₂O/CuZnAl-LDHs catalysts.

Fig. S7 XPS survey spectra of all elements.

Fig. S8 Adsorption capacity of Cu₂O/CuZnAl-LDHs heterojunction photocatalysts.

Fig. S9 Effects of ascorbic acid reduction time on Cu₂O/CuZnAl-LDHs system for TC degradation.

Fig. S10 SEM image of the used $Cu_2O/CuZnAl$ -LDHs catalyst.

Fig. S11 The XRD spectra of the used Cu₂O/CuZnAl-LDHs catalyst.

Fig. S12 Kubelka-Munk plots for CuZnAl-LDHs, Cu₂O, and Cu₂O/CuZnAl-LDHs.

Fig. S13 The HPLC-MS spectra before and after photodegradation of tetracycline for 2 h.

Fig. S14 The HPLC-MS spectra of a fraction of the intermediates during tetracycline degradation.

Fig. S15 The HPLC-MS spectra of the other intermediates during tetracycline degradation.

Formula	Molecular structure	m/z
$C_{22}H_{24}N_2O_8$	H ₃ C _N CH ₃	445
	OH O OH O OH	
$C_{20}H_{20}N_2O_8$	HO ,,,,CH ₃ , , , , , , , , , , , , ,	417
$C_{20}H_{17}NO_{13}$	HO HO HO HO HO HO HO HO HO HO HO HO HO H	480
$C_{20}H_{19}NO_{14}$	HO HO HO HO HO HO HO HO HO HO HO HO HO H	496
$C_{15}H_{10}O_{11}$		367
$C_{14}H_6O_{11}$		351
$C_{10}H_4O_8$		253
$C_{22}H_{24}N_2O_7$	HO , CH ₃ , CH ₃ , CH ₃ , NH ₂ OH O OH O O	428
$C_{20}H_{22}N_2O_7$	HO, ,, CH ₃ $\stackrel{NH_2}{\bar{z}}$ OH O OH O O	403
$C_{20}H_{19}NO_7$	HO ,,,,CH ₃ , , , , , , , , , , , , , , , , , , ,	384

 $\label{eq:Table S2} The intermediates in the process of tetracycline photodegradation by Cu_2O/CuZnAl-LDHs.$

$C_{19}H_{18}O_5$	HO, ,,CH ₃ OH O OH O	325
$C_{17}H_{18}O_5$	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	301
C ₂₃ H ₂₇ NO ₅	$H_{3}C_{N}CH_{3}$ $HO_{N}CH_{3}$ $HO_{N}CH_{3}$ $HO_{N}CH_{3}$ $HO_{N}CH_{3}$ CH_{3} $CH_$	396
$C_{18}H_{18}O_7$	HO, ,,CH ₃ OH CH ₂ OH O OH O	345
$C_{15}H_{15}O_{7}$		307
$C_{15}H_{18}O_5$	HO,,,CH ₃ OH OH OH	279