Supporting Information

On the Role of Graphene Oxide in Bifunctional Ni/MOF/rGO Composites in Electrochemical Nitrate Detection and Oxygen Evolution Reaction

Satya Lakshmi Pasarakonda^[a], Srikanth Ponnada^[b], Demudu Babu Gorle^[c], Rapaka S Chandra Bose^[d], Anjali Palariya^[e], Maryam Sadat Kiai^[f], Hima Bindu Gandham^[a], Murugavel Kathiresan^[g], Rakesh K Sharma^[b]*, Annapurna Nowduri^[a]*

^aDepartment of Engineering Chemistry, Andhra University College of Engineering (A), Andhra University, Visakhapatnam-530003, India.

^bSustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Jodhpur-342037, Rajasthan, India.

^cMaterials Research Centre, Indian Institute of Science, Bangalore-560012, Karnataka, India.

^dCentre for Materials for Electronics Technology, Thrissur-680581, Kerala, India.

^eDepartment of Chemistry, Jai Narayan Vyas University (New campus), Jodhpur-342005, Rajasthan-India.

^fCenter for BioNano Interactions, School of Chemistry, University College of Dublin, Belfiled, Dubline, Ireland

^gElectro Organic & Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nādu, India.

Corresponding authors

1. ** Prof Annapurna Nowduri

Department of Engineering Chemistry Andhra University College of Engineering (A) Andhra University, Visakhapatnam-530003, India ***aEmail-**dr.nannapurna@andhrauniversity.edu.in,

2. *bProf. Rakesh K Sharma, FRSC

Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India. *^bEmail: rks@iitj.ac.in Webpage: http://home.iitj.ac.in/~rks/

Synthesis of graphene oxide (GO)

The graphene oxide was synthesized using Hummer's and Offerman's techniques.^{54,62} In this experiment, the following ingredients were mixed and stirred in an ice bath for 30 minutes: 0.5 g of graphite, 0.5 g of NaNO₃, 23 mL of H₂SO₄, and 4 g of KMnO₄. The resulting solution was then heated in a water bath for almost two hours while being constantly stirred, producing a concentrated paste that was green in colour. After that, 40mL of water was slowly added, and the mixture was stirred while being heated to around 90°C for about an hour. Following the addition of 100 mL of water, 3 mL of H₂O₂ (30%) was gradually added until the liquid had the appropriate concentration. The colour of the solution has evolved from dark brown to a light yellowish-brown as it has matured. After that, the hot solution was filtered and repeatedly washed with 100 mL of water to lower the pH back to 7. Finally, the product was given a few hours to dry under a vacuum.

Synthesis of reduced graphene oxide (rGO)

The above-mentioned GO was mixed with a few drops of hydrogen hydrate (a reducing agent), which was then heated at 80°C for one hour. Following filtering, the reduced product was collected before centrifugation. The finished product was then dried in an oven at 120° C for 24 hours after being rinsed three times with C₂H₅OH and distilled water.

Synthesis of nickel-based metal-organic framework (Ni-MOF)

According to our previously published work, the Ni-MOF was made by dissolving 1,3,5-benzene tricarboxylic acid (1.0 mmol L⁻¹), 4,4"-bipyridine (1.0 mmol L⁻¹), and nickel (II) nitrate (1.0 mmol L⁻¹) in 40 mL of DMF, then heating the resulting mixture at 393 K for four hours. The reaction mixture was then given time to cool to room temperature. Now, solid Ni-MOF was filtered and repeatedly cleaned with DMF and ethanol. The finished product crystals were air dried for 12 hours at 333K.

Synthesis of Ni-MOF/GO composite

The Ni-MOF solution was prepared by dissolving 1.0 mM 1, 3, 5-benzenetricarboxylic acid, 1 mM 4,4-bipyridine, and 1.0 mM nickel (II) nitrate in 40 mL of DMF, followed by the addition of 100 mg of GO. The solution was sonicated, and the resultant mixture was then heated at 393 K for 4 hours before being employed. The mixture is then let to cool until it stops being heated at room temperature. After filtration, the solid Ni-MOF/GO was collected and repeatedly washed with DMF and ethanol. The finished product is air dried at 333K for 12 hours.

Synthesis of Ni-MOF/rGO composite

 $1.0 \text{ mmol } \text{L}^{-1} \text{ of } 1, 3, 5$ -benzene tricarboxylic acid, 1 mmol $\text{L}^{-1} \text{ of } 4,4$ -bipyridine, and 1 mM of nickel (II) nitrate were dissolved in 40 mL of DMF, and 100 mg of rGO was then added to the solution to prepare Ni-MOF/rGO. Its ability was then used to describe the Ni-MOF/rGO that was produced. The solution was then sonicated, and the resultant combination was heated at 393 K for 4 hours. The reaction mixture was then given time to cool to room temperature. The Ni-MOF/rGO product was then recovered by filtering and washed repeatedly with DMF and C₂H₅OH to get rid of any leftover impurities. The finished product is air dried at 333K for 12 hours.

Instrumentation

The prepared Ni-MOF and composite materials were initially assessed using the X-ray diffraction technique (Bruker D8 Advance Instrument). It was done using an energy dispersive x-ray source (EDX) (Hitachi SU-8010). Utilizing images taken by a Tecnai 20 G2 High Resolution Transmission Electron Microscope (HR-TEM) (FEI, The Netherlands), surface morphology investigations were conducted. Thermo Scientific's ESCALAB 250Xi, which has an Al K source (1486.6 eV), was used to do the XPS analysis. For the FTIR examination, a

Nicolet iS 20 with a grazing angle reflector was employed, and a Horiba solei was used to collect Raman spectra for the Raman analysis.

We utilised a portable computer to control the CH Instrument CHI660E electrochemical workstation for the experiments and keep track of the outcomes. Additionally, we measured using a standard three-electrode cell with a Pt wire acting as the counter/auxiliary electrode and an Ag|AgCl|KCl (3 M) solution as the reference. As a second working electrode, a 3 mm glassy carbon electrode (GCE), both bare and modified, has been used. Additionally, the DD H₂O package has all of the solutions.

Figure S1. EDAX analysis of (a) GO, (b) rGO, (c) Ni-MOF, (d) Ni-MOG/GO, and (e) Ni-MOF/rGO.

Figure S2. XPS survey spectra of Ni-MOF/rGO.

Elements		С		0		N	N	li
Samples	Wt%	At%	Wt%	At%	Wt%	At%	Wt%	At%
GO	61.01	67.12	33.21	27.43	5.78	5.45	-	-
rGO	59.60	65.78	33.97	28.14	6.43	6.08	-	-
Ni-MOF	49.35	60.03	27.15	24.79	11.74	12.24	11.77	2.93
Ni-MOF/GO	57.18	65.28	28.28	24.24	9.51	9.31	5.03	1.17
Ni-MOF/rGO	55.67	63.55	30.50	26.14	9.50	9.30	4.33	1.01

 Table S1. Elemental composition of GO, rGO, Ni-MOF, Ni-MOF/GO, and Ni-MOF/rGO.

Table S2. Comparison of the present Ni-MOF/rGO fabricated sensor with the reported sensors

 towards electrochemical sensing of nitrate.

Modified Electrodes	Method	Linear range (µM)	LOD (µM)	Sensitivity (µA µM ⁻¹ cm ⁻ ²)	Ref.
NiR/rGO/PPy/GCE	CV	$5 \times 10^3 - 10^4$	275	-	1
NiR/Gr foam/Ti NF	Am	0.16-7128	0.16	42.1	2
NiR/ZnO NRs/AgE	Am	1-3400	1	0.45	3
NiR/GO/PEDOT	Imp	7.09-7128	2.17	3.8×10-3	4
NF/AuE					
NiR/nTiO2 NFs/Gr	Imp	1-1000	-	0.316	5
foam					
GO NSh/TiE	CV	-	-	-	6
Gr/Cu NPs/AuE	DPV	10-90	7.89	0.20	7
rGO/MWCNTs/Cu	SWV	0.1-75	0.02	0.215	8
NPs/GCE					
LIG/Polyimide	Pot	10-10 ⁵	20.6±14.8	54.8±2.5	9
T-f rGO/AuE	Pot	10-10 ⁵	4	60.0±0.5	10
ERGO/Au NPs/GCE	Pot	10-10 ⁵	6.30	-	11
L-MWCNTs/GCE	Pot	50-10 ⁴	0.9	-	12
Cu NWA	LSV	10-50	9	0.0636	13
Cu NPs/PtE	LSV	50-1500	-	0.73	14
Ag NPs/AuE	SWV	0.39-50	0.39	0.1057	15
Ag NPs/AuE	SWV	1×10 ⁻³ – 0.01	9×10 ⁻⁴	0.012	16
Oxide-deficient Cu-Pt	DPV	120-990	0.159	2.3782	17
Pd-Au NPs composite	LSV	16-242	1.19	0.29	18
Cu _x O-GCS/BPPGE	CV	10-100	1.032	1650	19
PANI/Cu NPs/GCE	LSV	1-10 ⁵	5	0.78	20
PPy/graphite paste	Pot	10-10 ⁵	<10	>52	21
POT-MoS2/AuE	Pot	$16-2.4 \times 10^4$	22.6	64	22
Ni-MOF/rGO	DPV	5-10	4.018	0.08	This work

WE: Working electrode, LOD: Limit of detection, Am: Amperometry, CV: Cyclic voltammetry, DPV: Differential pulse voltammetry, SWV: Square wave voltammetry, LSV: Linear Sweeping voltammetry, GCE: Glassy carbon electrode, AuE: Gold electrode, AgE:

Silver electrode, **TiE**: Titanium electrode, **PtE**: Platinum electrode, **BPPGE**: Basal plane pyrolytic graphite electrode, **NiR**: Nitrate reductase, **Gr**: Graphene, **GO**: Graphene oxide, **rGO**: Reduced graphene oxide, **T**-*f* **rGO**: Thiol- functionalized rGO, **ERGO**: Electrochemically reduced GO, **CNTs**: Carbon nanotubes, **MWCNTs**: Multiwall carbon nanotubes, **L-MWCNTs**: Lipophilic MWCNTs, **LIG**: Laser-induced graphene, **PEDOT**: poly(3,4- ethylenedioxythiophene), **PPy**: Polypyrrole, **PANI**: polyaniline, **POT-MoS2**: poly(3-octylthio- phene-2,5-diyl) - molybdenum disulfide, **ZnO**: Zinc oxide, **nTiO2**: Titanium dioxide, **CuxO-GCS**: Copper oxide impregnated glassy carbon spheres, **NF**: Nanofiber,

NWA: Nanowire array, NR: Nanorod, NSh: Nanosheet, NP: Nanoparticle, M: Measurement,

d: Day, mth: month, wk: Week, h: Hour.

Table S3. The results for detection of nitrate ions in bore water samples.

S. No.	Real sample	Added	Deducted by our	RR (%)
	(Bore water)	(NO_3)	method (µM)	
		(µM)		
1	Sample 1	5	5.235 ± 0.015	104.7
2	Sample2	5	5.312 ± 0.032	106.4
3	Sample 3	5	5.420 ± 0.021	108.4

Table S4. Comparison of the present Ni-MOF/rGO fabricated electrode with the reported

 electrocatalysts towards oxygen evolution reaction.

Electrocatalyst	Electrolyte	Electrode	Over	Year	Ref
			potential		
1.Nickel foam and stainless-steel	1 M KOH solution	GCE	0.277 V at	2019	23
mesh			10		
			mA/cm ²		
2.Single-atom Ruthenium (Ru-	0.5 M H ₂ SO ₄	GCE	0.267 V at	2019	24
N-C, nitrogen carbon support)			10		
catalyst			mA/cm ²		
3.Phosphorous-Doped NiCo ₂ O ₄	1 M KOH	P-NCO	0.3 V at 10	2019	25
Nanowire		IN WY S/INF	mA/cm ²		
4.Metal-Free Nanoporous High-	1 M KOH	GCE	0.223 V at	2019	26
Entropy Alloys			10		
			mA/cm ²		
5.Amorphous Fe-Ni-P-B-O	1 M KOH	GCE	0.236 V at	2019	27
Nanocages			10		
			mA/cm ²		
7.Iron Nickel Catalyst	1 M KOH	Au- coated	0.245 V at	2019	28
		FTO	10		
			mA/cm ²		
9.Metal-organic framework	1 M KOH	Co ₃ O ₄ /MoS ₂	0.230 V at	2019	29
derived Co ₃ O ₄ /MoS ₂		foam	20		
heterostructure			mA/cm ²		
10.Fe-Doped Co- based	0.1 M KOH	GCE	-	2019	30
Perovskite Oxide					

11. Chromium-ruthenium oxidesolid solution electrocatalyst	0.5 M H ₂ SO ₄	GCE	0.178 V at 10 mA/cm ²	2019	31
12. Ni _x Co _{3-x} O ₄ Electrocatalyst	1 М КОН	GCRDE	0.4 V at 10 mA/cm ²	2019	32
13. Two-DimensionalBimetallicNickel-cobaltPhosphateNanoplates	1 М КОН	GCE	0.310 V at 10 mA/cm ²	2020	33
15. CoMoO _x /CoMoS ₂ /CoS _x nanobox electrocatalysts	1 М КОН	GCE	0.281 V at 10 mA/cm ²	2020	34
16. Binder-Free Heterostructure NiFe ₂ O ₄ /NiFe LDH Nanosheet Composite Electrocatalysts	1 M KOH	NiFe ₂ O ₄ /NiF e LDH composite film	0.190 V at 100 mA/cm ²	2020	35
17.Fe doped Mo/Te nanorods	1 M KOH	GCE	0.300 V at 10 mA/cm ²	2021	36
18. Trimetallic Co-Ni-Fe oxides derived from core-shell structure metal-organic frameworks	1 M KOH	Carbon Paper electrode coated with catalyst	0.265 V at 50 mA/cm ²	2021	37
19.FeNi-based nanoparticles	1 M KOH	-	0.230 V at 10 mA/cm ²	2021	38
20. IrondopedcobaltfluoridederivedCoFelayereddoublehydroxide	1 M KOH	GCE	0.230 V at 10 mA/cm ²	2021	39

21. High-Entropy Phosphate	1 M KOH	GCE	0.270 V at	2021	40
catalyst			10		
			mA/cm^2		
22.Hollow manganese-cobalt	1 M KOH	GCE	0.330 V at	2021	41
phosphide yolk-shell spheres			10		
			mA/cm ²		
24 IrCuNi Deenly Concesso		CCE	0.273 V ot	2021	42
24.incurvi Deepiy Concave	0.1 1 10104	UCL	0.275 v at	2021	42
Nanocubes			10		
			mA/cm ²		
25. Metal-Organic Framework	1 M KOH	CFP	0.281 V at	2021	43
Derived Bimetallic NiFe			10		
Derived Dimetalite Ivire			10		
Selenide Electrocatalysts			mA/cm ²		
26. NiP ₂ nanosheet-implanted	1 M KOH	-	0.221 V at	2021	44
reduced graphene oxide			10		
composite			mA/cm ²		
	0.4.N.4.W.0.W		0.040.11	2021	
27.Multilayer hollow MnCo ₂ O ₄	0.1 M KOH	GCE	0.340 V at	2021	45
microsphere			10		
			mA/cm ²		
28 NiCoFe-I DHs	1 M NaOH	Carbon fiber	0.288 V at	2020	46
			0.200 v at	2020	-10
		paper	10		
			mA/cm ²		
29. Ni-MOF/rGO	1М КОН	GCE	0.101 V at	2022	This
			10		work
			4 / 2		
			mA/cm ²		

References

- Umar, M. F.; Nasar, A. Reduced graphene oxide/polypyrrole/nitrate reductase deposited glassy carbon electrode (GCE/RGO/PPy/NR): biosensor for the detection of nitrate in wastewater. *Appl. Water Sci.* 2018, 8, 1–10.
- (2) Ali, M. A.; Mondal, K.; Wang, Y.; Mahal, N. K.; Castellano, M. J.; Dong, L. Microfluidic detection of soil nitrate ions using novel electrochemical foam electrode. *Proc. IEEE Int. Conf. Micro Electro Mech. Syst.* 2017, 2017, 482–485.
- (3) Ahmad, R.; Bhat, K. S.; Ahn, M. S.; Hahn, Y. B. Fabrication of a robust and highly sensitive nitrate biosensor based on directly grown zinc oxide nanorods on a silver electrode. *New J. Chem.* **2017**, *41*, 10992–10997.
- (4) Ali, M. A.; Jiang, H.; Mahal, N. K.; Weber, R. J.; Kumar, R.; Castellano, M. J.; Dong, L. Microfluidic impedimetric sensor for soil nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. *Sensors Actuators: B Chem.* 2017, 239, 1289–1299.
- (5) Ali, M. A.; Jiao, Y.; Tabassum, S.; Wang, Y.; Jiang, H.; Dong, L. Electrochemical detection of nitrate ions in soil water using graphene foam modified by TiO₂ nanofibers and enzyme molecules. *Transducers* **2017**, 238–241.
- (6) Ma, X.; Li, M.; Liu, X.; Wang, L.; Chen, N.; Li, J.; Feng, C. A graphene oxide nanosheetmodified Ti nanocomposite electrode with enhanced electrochemical property and stability for nitrate reduction. *Chem. Eng. J.* 2018, 348, 171–179.
- (7) Wang, L.; Kim, J.; Cui, T. Self-assembled graphene and copper nanoparticles composite sensor for nitrate determination. *Microsyst. Technol.* **2018**, *24*, 3623–3630.
- (8) Bagheri, H.; Hajian, A.; Rezaei, M.; Shirzadmehr, A. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate. *J. Hazard. Mater.* **2017**, *324*, 762–772.
- (9) Garland, N. T.; McLamore, E. S.; Cavallaro, N. D.; Mendivelso-Perez, D.; Smith, E. A.; Jing, D.; Claussen, J. C. Flexible laser-induced graphene for nitrogen sensing in soil. ACS Appl. Mater. Interfaces 2018, 10, 39124–39133.
- (10) Liu, Y.; Liu, Y.; Meng, Z.; Qin, Y.; Jiang, D.; Xi, K.; Wang, P. Thiolfunctionalized reduced graphene oxide as self-assembled ion-to-electron transducer for durable solid-contact ion-selective electrodes. *Talanta* **2020**, *208*, 120374.
- (11) Chen, M.; Zhang, M.; Wang, X.; Yang, Q.; Wang, M.; Liu, G.; Yao, L. An all-solid-state nitrate ion-selective electrode with nanohybrids composite films for in-situ soil nutrient monitoring. *Sensors* 2020, 20, 2270.
- (12) Cuartero, M.; Crespo, G.; Cherubini, T.; Pankratova, N.; Confalonieri, F.; Massa, F.; Lou Tercier-Waeber, M.; Abdou, M.; Sch¨afer, J.; Bakker, E. In situ detection of macronutrients and chloride in seawater by submersible electrochemical sensors. *Anal. Chem.* **2018**, *90*, 4702–4710.
- (13) Patella, B.; Russo, R. R.; O'Riordan, A.; Aiello, G.; Sunseri, C.; Inguanta, R. Copper nanowire array as highly selective electrochemical sensor of nitrate ions in water. *Talanta* 2021, 221, 121643.

- Li, Y.; Zhang, Z.; Song, Y.; Bian, C.; Sun, J.; Dong, H.; Xia, S. Determination of nitrate in potable Water using a miniaturized electrochemical sensor, in: NEMS 2018 -13th Annu. IEEE Int. Conf. Nano/Micro Eng. Mol. Syst., IEEE, 2018, pp. 619–622.
- (15) Legrand, D. C.; Barus, C.; Garçon, V. Square wave voltammetry measurements of low concentrations of nitrate using Au/AgNPs electrode in chloride solutions. *Electroanalysis* 2017, 29, 2882–2887.
- (16) Lebon, E.; Fau, P.; Comtat, M.; Kahn, M. L.; Sournia-Saquet, A.; Temple-Boyer, P.; Dubreuil, B.; Behra, P.; Fajerwerg, K. In situ metalorganic deposition of silver nanoparticles on gold substrate and square wave voltammetry: a highly efficient combination for nanomolar detection of nitrate ions in sea water. *Chemosensors* 2018, 6, 1–12.
- (17) Mumtarin, Z.; Rahman, M. M.; Hasnat, M. A. Electro-kinetics of conversion of NO₃⁻ into NO₂⁻ and sensing of nitrate ions via reduction reactions at copper immobilized platinum surface in the neutral medium. *Electrochim. Acta* **2020**, *346*, 135994.
- (18) Zhao, S.; Tong, J.; Li, Y.; Sun, J.; Bian, C.; Xia, S. Palladium-gold modified ultramicro interdigital array electrode chip for nitrate detection in neutral water. *Micromachines* **2019**, *10*, 223.
- (19) Ramakrishnappa, T.; Sureshkumar, K.; Pandurangappa, M. Copper oxide impregnated glassy carbon spheres based electrochemical interface for nitrite/nitrate sensing. *Mater. Chem. Phys.* **2020**, *245*, 122744.
- (20) Essousi, H.; Barhoumi, H.; Bibani, M.; Ktari, N.; Wendler, F.; Al-Hamry, A.; Kanoun, O. Ion-imprinted electrochemical sensor based on copper nanoparticlespolyaniline matrix for nitrate detection. *J. Sensors* 2019, 2019, 1-14.
- (21) Schwarz, J.; Trommer, K.; Mertig, M. Solid-contact ion-selective electrodes based on graphite paste for potentiometric nitrate and ammonium determinations. *Am. J. Anal. Chem.* 2018, 9, 591–601.
- Ali, M. A.; Wang, X.; Chen, Y.; Jiao, Y.; Mahal, N. K.; Moru, S.; Castellano, M. J.; Schnable, J. C.; Schnable, P. S.; Dong, L. Continuous Monitoring of Soil Nitrate Using a Miniature Sensor with Poly(3-octyl-thiophene) and Molybdenum Disulfide Nanocomposite. *ACS Appl. Mater. Interfaces* 2019, *11*, 29195–29206.
- (23) Hu, X.; Tian, X.; Lin, Y.-W.; Wang, Z. Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. *RSC Adv.* **2019**, *9*, 31563-31571.
- (24) Cao, L.; Luo, Q.; Chen, J.; Wang, L.; Lin, Y.; Wang, H.; Liu, X.; Shen, X.; Zhang, W.; Liu, W.; Qi, Z.; Jiang, Z.; Yang, J.; Yao, T. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. *Nat. Commun.* **2019**, *10*, 4849.
- (25) Chu, W.; Shi, Z.; Hou, Y.; Ma, D.; Bai, X.; Gao, Y.; Yang, N. Trifunctional of Phosphorus-Doped NiCo2O4 Nanowire Materials for Asymmetric Supercapacitor, Oxygen Evolution Reaction, and Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2020, 12, 2763–2772.
- (26) Qiu, H. -J.; Fang, G.; Gao, J.; Wen, Y.; Lv, J.; Li, H.; Xie, G.; Liu, X.; Sun, S. Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Materials Lett. 2019, 1, 526–533.

- Ren, H.; Sun, X.; Du, C.; Zhao, J.; Liu, D.; Fang, W.; Kumar, S.; Chua, R.; Meng, S.; Kidkhunthod, P.; Song, L.; Li, S.; Madhavi, S.; Yan, Q. Amorphous Fe–Ni– P–B–O Nanocages as Efficient Electrocatalysts for Oxygen Evolution Reaction. *ACS Nano* 2019, *13*, 12969–12979.
- (28) Song, F.; Busch, M. M.; Lassalle-Kaiser, B.; Hsu, C. -S.; Petkucheva, E.; Bensimon, M.; Chen, H. M.; Corminboeuf, C.; Hu, X. An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Cent. Sci. 2019, 5, 558–568.
- (29) Muthurasu, A.; Maruthapandian, V.; Kim, H. Y. Metal-organic framework derived Co₃O₄/MoS₂ heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction. *Appl. Catal. B* 2019, 248, 202-210.
- Kim, B. -J.; Fabbri, E.; Abbott, D. F.; Cheng, X.; Clark, A. H.; Nachtegaal, M.; Borlaf, M.; Castelli, I. E.; Graule, T.; Schmidt, T. J. Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction. *J. Am. Chem. Soc.* 2019, *141*, 5231–5240.
- (31) Lin, Y., Tian, Z., Zhang, L.; Ma, J.; Jiang, Z.; Deibert, B. J.; Ge, R.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. *Nat. Commun.* **2019**, *10*, 162.
- (32) Cui, M.; Ding, X.; Huang, X.; Shen, Z.; Lee, T. -L.; Oropeza, F. E.; Hofmann, J. P.; Hensen, E. J. M.; Zhang, K. H. L. Ni³⁺-Induced Hole States Enhance the Oxygen Evolution Reaction Activity of Ni_xCo_{3-x}O₄ Electrocatalysts. *Chem. Mater.* 2019, *31*, 7618–7625.
- (33) Septiani, N. L. W.; Kaneti, Y. V.; Fathoni, K. B.; Kani, K.; Allah, A. E.; Yuliarto, B.; Nugraha.; Dipojono, H. K.; Alothman, Z. A.; Golberg, D.; Yamauchi, Y. Self-Assembly of Two-Dimensional Bimetallic Nickel–Cobalt Phosphate Nanoplates into One-Dimensional Porous Chainlike Architecture for Efficient Oxygen Evolution Reaction. *Chem. Mater.* **2020**, *32*, 7005–7018.
- (34) Xu, H.; Shang, H.; Wang, C.; Jin, L.; Chen, C.; Wang, C.; Du, Y. Threedimensional open CoMoO_x/CoMoS_x/CoS_x nanobox electrocatalysts for efficient oxygen evolution reaction. *Appl. Catal. B* **2020**, *265*, 118605.
- Kashale, A. A.; Yi, C. -H.; Cheng, K. -Y.; Guo, J. -S.; Pan, Y. -H.; Chen, I. -W.
 P. Binder-Free Heterostructured NiFe₂O₄/NiFe LDH Nanosheet Composite Electrocatalysts for Oxygen Evolution Reactions. *ACS Appl. Energy Mater.* 2020, *3*, 10831–10840.
- (36) He, R.; Li, M.; Qiao, W.; Feng, L. Fe doped Mo/Te nanorods with improved stability for oxygen evolution reaction. *Chem. Eng. J.* **2021**, *423*, 130168.
- (37) Chen, C.; Tuo, Y.; Lu, Q.; Lu, H.; Zhang, S.; Zhou, Y.; Zhang, J.; Liu, Z.; Kang, Z.; Feng, X.; Chen, D. Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. *Appl. Catal. B* 2021, 287, 119953.
- (38) Gu, X.; Liu, Z.; Li, M.; Tian, J.; Feng, L. Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction. *Appl. Catal. B* 2021, 297, 120462.

- (39) Li, M.; Gu, Y.; Chang, Y.; Gu, X.; Tian, J.; Wu, X.; Feng, L. Iron doped cobalt fluoride derived from CoFe layered double hydroxide for efficient oxygen evolution reaction. *Chem. Eng. J.* **2021**, *425*, 130686.
- Qiao, H.; Wang, X.; Dong, Q.; Zheng, H.; Chen, G.; Hong, M.; Yang, C. -P.;
 Wu, M.; He, K.; Hu, L. A high-entropy phosphate catalyst for oxygen evolution reaction. *Nano Energy* 2021, *86*, 106029.
- (41) Kaneti, Y. V.; Guo, Y.; Septiani, N. L. W.; Iqbal, M.; Jiang, X.; Takei, T.; Yuliarto, B.; Alothman, Z. A.; Golberg, D.; Yamauchi, Y. Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction. *Chem. Eng. J.* **2021**, *405*, 126580.
- (42) Liu, D.; Lv, Q.; Lu, S.; Fang, J.; Zhang, Y.; Wang, X.; Xue, Y.; Zhu, W.; Zhuang, Z. IrCuNi Deeply Concave Nanocubes as Highly Active Oxygen Evolution Reaction Electrocatalyst in Acid Electrolyte. *Nano Lett.* **2021**, *21*, 2809–2816.
- (43) Guo, Y.; Zhang, C.; Zhang, J.; Dastafkan, K.; Wang, K.; Zhao, C.; Shi, Z. Metal–Organic Framework-Derived Bimetallic NiFe Selenide Electrocatalysts with Multiple Phases for Efficient Oxygen Evolution Reaction. *ACS Sustainable Chem. Eng.* 2021, *9*, 2047–2056.
- (44) Luo, S.; Wang, R.; Hei, P.; Gao, L.; Yang, J.; Jiao, T. Self-assembled Ni₂P nanosheet-implanted reduced graphene oxide composite as highly efficient electrocatalyst for oxygen evolution reaction. *Colloids Surf. A: Physicochem. Eng. Asp.* **2021**, *612*, 125992.
- (45) Zeng, K.; Li, W.; Zhou, Y.; Sun, Z.; Lu, C.; Yan, J.; Choi, J. -H.; Yang, R. Multilayer hollow MnCo₂O₄ microsphere with oxygen vacancies as efficient electrocatalyst for oxygen evolution reaction. *Chem. Eng. J.* **2021**, *421*, 127831.
- (46) Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. Trimetallic NiCoFe-Layered Double Hydroxides Nanosheets Efficient for Oxygen Evolution and Highly Selective Oxidation of Biomass-Derived 5-Hydroxymethylfurfural. ACS Catal. 2020, 10, 5179–5189.