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Synthesis of graphene oxide (GO) 

The graphene oxide was synthesized using Hummer's and Offerman's techniques.54,62 

In this experiment, the following ingredients were mixed and stirred in an ice bath for 30 

minutes: 0.5 g of graphite, 0.5 g of NaNO3, 23 mL of H2SO4, and 4 g of KMnO4. The resulting 

solution was then heated in a water bath for almost two hours while being constantly stirred, 

producing a concentrated paste that was green in colour. After that, 40mL of water was slowly 

added, and the mixture was stirred while being heated to around 90°C for about an hour. 

Following the addition of 100 mL of water, 3 mL of H2O2 (30%) was gradually added until the 

liquid had the appropriate concentration. The colour of the solution has evolved from dark 

brown to a light yellowish-brown as it has matured. After that, the hot solution was filtered and 

repeatedly washed with 100 mL of water to lower the pH back to 7. Finally, the product was 

given a few hours to dry under a vacuum. 

Synthesis of reduced graphene oxide (rGO) 

 The above-mentioned GO was mixed with a few drops of hydrogen hydrate (a 

reducing agent), which was then heated at 80°C for one hour. Following filtering, the reduced 

product was collected before centrifugation. The finished product was then dried in an oven at 

120°C for 24 hours after being rinsed three times with C2H5OH and distilled water. 

Synthesis of nickel-based metal-organic framework (Ni-MOF) 

According to our previously published work, the Ni-MOF was made by dissolving 

1,3,5-benzene tricarboxylic acid (1.0 mmol L-1), 4,4”-bipyridine (1.0 mmol L-1), and nickel (II) 

nitrate (1.0 mmol L-1) in 40 mL of DMF, then heating the resulting mixture at 393 K for four 

hours. The reaction mixture was then given time to cool to room temperature. Now, solid Ni-

MOF was filtered and repeatedly cleaned with DMF and ethanol. The finished product crystals 

were air dried for 12 hours at 333K. 

 

 



Synthesis of Ni-MOF/GO composite 

The Ni-MOF solution was prepared by dissolving 1.0 mM 1, 3, 5-benzenetricarboxylic 

acid, 1 mM 4,4-bipyridine, and 1.0 mM nickel (II) nitrate in 40 mL of DMF, followed by the 

addition of 100 mg of GO. The solution was sonicated, and the resultant mixture was then 

heated at 393 K for 4 hours before being employed. The mixture is then let to cool until it stops 

being heated at room temperature. After filtration, the solid Ni-MOF/GO was collected and 

repeatedly washed with DMF and ethanol. The finished product is air dried at 333K for 12 

hours. 

Synthesis of Ni-MOF/rGO composite 

1.0 mmol L-1 of 1, 3, 5-benzene tricarboxylic acid, 1 mmol L-1 of 4,4-bipyridine, and 1 

mM of nickel (II) nitrate were dissolved in 40 mL of DMF, and 100 mg of rGO was then added 

to the solution to prepare Ni-MOF/rGO. Its ability was then used to describe the Ni-MOF/rGO 

that was produced. The solution was then sonicated, and the resultant combination was heated 

at 393 K for 4 hours. The reaction mixture was then given time to cool to room temperature. 

The Ni-MOF/rGO product was then recovered by filtering and washed repeatedly with DMF 

and C2H5OH to get rid of any leftover impurities. The finished product is air dried at 333K for 

12 hours. 

Instrumentation  

The prepared Ni-MOF and composite materials were initially assessed using the X-ray 

diffraction technique (Bruker D8 Advance Instrument). It was done using an energy dispersive 

x-ray source (EDX) (Hitachi SU-8010). Utilizing images taken by a Tecnai 20 G2 High 

Resolution Transmission Electron Microscope (HR-TEM) (FEI, The Netherlands), surface 

morphology investigations were conducted. Thermo Scientific's ESCALAB 250Xi, which has 

an Al K source (1486.6 eV), was used to do the XPS analysis. For the FTIR examination, a 



Nicolet iS 20 with a grazing angle reflector was employed, and a Horiba solei was used to 

collect Raman spectra for the Raman analysis. 

We utilised a portable computer to control the CH Instrument CHI660E electrochemical 

workstation for the experiments and keep track of the outcomes. Additionally, we measured 

using a standard three-electrode cell with a Pt wire acting as the counter/auxiliary electrode 

and an Ag|AgCl|KCl (3 M) solution as the reference. As a second working electrode, a 3 mm 

glassy carbon electrode (GCE), both bare and modified, has been used. Additionally, the DD 

H2O package has all of the solutions. 

 

 

 

 

 

 

 

 

 



 

 

Figure S1. EDAX analysis of (a) GO, (b) rGO, (c) Ni-MOF, (d) Ni-MOG/GO, and (e) Ni-

MOF/rGO.  



 

Figure S2. XPS survey spectra of Ni-MOF/rGO. 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1. Elemental composition of GO, rGO, Ni-MOF, Ni-MOF/GO, and Ni-MOF/rGO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elements C O N Ni 

Samples Wt% At% Wt% At% Wt% At% Wt% At% 

GO 61.01 67.12 33.21 27.43 5.78 5.45 - - 

rGO 59.60 65.78 33.97 28.14 6.43 6.08 - - 

Ni-MOF 49.35 60.03 27.15 24.79 11.74 12.24 11.77 2.93 

Ni-MOF/GO 57.18 65.28 28.28 24.24 9.51 9.31 5.03 1.17 

Ni-MOF/rGO 55.67 63.55 30.50 26.14 9.50 9.30 4.33 1.01 



Table S2. Comparison of the present Ni-MOF/rGO fabricated sensor with the reported sensors 

towards electrochemical sensing of nitrate. 

 

 

WE: Working electrode, LOD: Limit of detection, Am: Amperometry, CV: Cyclic 

voltammetry, DPV: Differential pulse voltammetry, SWV: Square wave voltammetry, LSV: 

Linear Sweeping voltammetry, GCE: Glassy carbon electrode, AuE: Gold electrode, AgE: 

Modified Electrodes Method Linear 

range (µM) 

LOD 

(µM) 

Sensitivity 

(µA µM-1 cm-

2) 

Ref. 

NiR/rGO/PPy/GCE CV 5×103 - 104 275 - 1 

NiR/Gr foam/Ti NF Am 0.16-7128 0.16 42.1 2 

NiR/ZnO NRs/AgE Am 1-3400 1 0.45 3 

NiR/GO/PEDOT 

NF/AuE 

Imp 7.09-7128 2.17 3.8×10-3 4 

NiR/nTiO2 NFs/Gr 

foam 

Imp 1-1000 - 0.316 5 

GO NSh/TiE CV - - - 6 

Gr/Cu NPs/AuE DPV 10-90 7.89 0.20 7 

rGO/MWCNTs/Cu 

NPs/GCE 

SWV 0.1-75 0.02 0.215 8 

LIG/Polyimide Pot 10-105 20.6±14.8 54.8±2.5 9 

T-f rGO/AuE Pot 10-105 4 60.0±0.5 10 

ERGO/Au NPs/GCE Pot 10-105 6.30 - 11 

L-MWCNTs/GCE Pot 50-104 0.9 - 12 

Cu NWA LSV 10-50 9 0.0636 13 

Cu NPs/PtE LSV 50-1500 - 0.73 14 

Ag NPs/AuE SWV 0.39-50 0.39 0.1057 15 

Ag NPs/AuE SWV 1×10-3 – 

0.01 

9×10-4 0.012 16 

Oxide-deficient Cu-Pt DPV 120-990 0.159 2.3782 17 

Pd-Au NPs composite LSV 16-242 1.19 0.29 18 

CuxO-GCS/BPPGE CV 10-100 1.032 1650 19 

PANI/Cu NPs/GCE LSV 1-105 5 0.78 20 

PPy/graphite paste Pot 10-105 <10 >52 21 

POT-MoS2/AuE Pot 16-2.4×104 22.6 64 22 

Ni-MOF/rGO  DPV 5-10 4.018 0.08 This 

work 



Silver electrode, TiE: Titanium electrode, PtE: Platinum electrode, BPPGE: Basal plane 

pyrolytic graphite electrode, NiR: Nitrate reductase, Gr: Graphene, GO: Graphene oxide, 

rGO: Reduced graphene oxide, T-f rGO: Thiol- functionalized rGO, ERGO: 

Electrochemically reduced GO, CNTs: Carbon nanotubes, MWCNTs: Multiwall carbon 

nanotubes, L-MWCNTs: Lipophilic MWCNTs, LIG: Laser-induced graphene, PEDOT: 

poly(3,4- ethylenedioxythiophene), PPy: Polypyrrole, PANI: polyaniline, POT-MoS2: 

poly(3-octylthio- phene-2,5-diyl) - molybdenum disulfide, ZnO: Zinc oxide, nTiO2: Titanium 

dioxide, CuxO-GCS: Copper oxide impregnated glassy carbon spheres, NF: Nanofiber,  

 NWA: Nanowire array, NR: Nanorod, NSh: Nanosheet, NP: Nanoparticle, M: Measurement,  

 d: Day, mth: month, wk: Week, h: Hour. 

 

Table S3. The results for detection of nitrate ions in bore water samples. 

  

S. No. Real sample 

(Bore water) 

Added 

(NO3
-) 

(µM) 

Deducted by our 

method (µM) 

RR (%) 

1 Sample 1 5 5.235 ± 0.015 104.7 

2 Sample2 5 5.312 ± 0.032 106.4 

3 Sample 3 5 5.420 ± 0.021 108.4 



Table S4. Comparison of the present Ni-MOF/rGO fabricated electrode with the reported 

electrocatalysts towards oxygen evolution reaction. 

 Electrocatalyst    Electrolyte 

 

Electrode Over 

potential 

Year   Ref 

1.Nickel foam and stainless-steel 

mesh 

1 M KOH solution     GCE  0.277 V at 

10 

mA/cm2  

2019   23 

2.Single-atom Ruthenium (Ru-

N-C, nitrogen carbon support) 

catalyst 

0.5 M H2SO4 GCE 0.267 V at 

10 

mA/cm2 

2019   24 

3.Phosphorous-Doped NiCo2O4 

Nanowire 

1 M KOH    P-NCO 

  NWs/NF  

0.3 V at 10 

mA/cm2 

2019 25 

4.Metal-Free Nanoporous High-

Entropy Alloys 

1 M KOH GCE 0.223 V at 

10 

mA/cm2 

2019 26 

5.Amorphous Fe-Ni-P-B-O 

Nanocages 

1 M KOH GCE 0.236 V at 

10 

mA/cm2 

2019 27 

7.Iron Nickel Catalyst 1 M KOH Au- coated 

FTO 

0.245 V at 

10 

mA/cm2 

2019 28 

9.Metal-organic framework 

derived Co3O4/MoS2 

heterostructure 

1 M KOH Co3O4/MoS2 

foam 

0.230 V at 

20 

mA/cm2 

2019 29 

10.Fe-Doped Co- based 

Perovskite Oxide 

0.1 M KOH GCE - 2019 30 



11.Chromium-ruthenium oxide 

solid solution electrocatalyst 

0.5 M H2SO4 GCE 0.178 V at 

10 

mA/cm2 

2019 31 

12.NixCo3-xO4 Electrocatalyst 1 M KOH GCRDE 0.4 V at 10 

mA/cm2 

2019 32 

13.Two-Dimensional Bimetallic 

Nickel-cobalt Phosphate 

Nanoplates 

1 M KOH GCE 0.310 V at 

10 

mA/cm2 

2020 33 

15.CoMoOX/CoMoS2/CoSx 

nanobox electrocatalysts 

1 M KOH GCE 0.281 V at 

10 

mA/cm2 

2020 34 

16.Binder-Free Heterostructure 

NiFe2O4/NiFe LDH Nanosheet 

Composite Electrocatalysts 

1 M KOH NiFe2O4/NiF

e LDH 

composite 

film 

0.190 V at 

100 

mA/cm2 

2020 35 

17.Fe doped Mo/Te nanorods 1 M KOH GCE 0.300 V at 

10 

mA/cm2 

2021 36 

18.Trimetallic Co-Ni-Fe oxides 

derived from core-shell structure 

metal-organic frameworks 

1 M KOH Carbon Paper 

electrode 

coated with 

catalyst 

 

 

0.265 V at 

50 

mA/cm2 

2021 37 

19.FeNi-based nanoparticles 1 M KOH - 0.230 V at 

10 

mA/cm2 

2021 38 

20.Iron doped cobalt fluoride 

derived CoFe layered double 

hydroxide 

1 M KOH GCE 0.230 V at 

10 

mA/cm2 

2021 39 



21.High-Entropy Phosphate 

catalyst 

1 M KOH GCE 0.270 V at 

10 

mA/cm2 

2021 40 

22.Hollow manganese-cobalt 

phosphide yolk-shell spheres 

1 M KOH GCE 0.330 V at 

10 

mA/cm2 

2021 41 

24.IrCuNi Deeply Concave 

Nanocubes 

0.1 M HClO4 GCE 0.273 V at 

10 

mA/cm2 

2021 42 

25.Metal-Organic Framework 

Derived Bimetallic NiFe 

Selenide Electrocatalysts 

1 M KOH CFP 0.281 V at 

10 

mA/cm2 

2021 43 

26.NiP2 nanosheet-implanted 

reduced graphene oxide 

composite 

1 M KOH - 0.221 V at 

10 

mA/cm2 

2021 44 

27.Multilayer hollow MnCo2O4 

microsphere 

0.1 M KOH GCE 0.340 V at 

10 

mA/cm2 

2021 45 

28.NiCoFe-LDHs 1 M NaOH Carbon fiber 

paper 

0.288 V at 

10 

mA/cm2 

2020 46 

29. Ni-MOF/rGO 1M KOH GCE 0.101 V at 

10 

mA/cm2 

2022 This 

work 
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