Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

The structural changes and sodium storage of carbon phase in the cobalt sulfides/carbon composites

Yaoyao Wang, Hanting Shen, Dan Zhao, Zhong Li*, Hanqing Zhao*

State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of

Technology, Taiyuan 030024, China.

^{*} Corresponding author: zhaohanqing@tyut.edu.cn; hanqing_zhao1@163.com (Hanqing Zhao)

lizhong@tyut.edu.cn (Zhong Li)

Fig. S1. TEM images of (a) HC, (b) N/S-HC, (c) Co_4S_3 -HC. HRTEM images of (d) HC, (e) N/S-HC, (f) Co_4S_3 -HC.

Fig. S2. (a) N_2 adsorption-desorption isothermal curves and (b) pore size distribution plots for HC, N/S-HC and Co₄S₃-HC.

Fig. S3. The initial three CV curves at 0.1 mV s⁻¹ of (a) HC and (b) N/S-HC and the galvanostatic discharge/charge curves at 0.05 A g⁻¹ of (c) HC and (d) N/S-HC.

Fig. S4. (a)XRD patterns and (b) rate performances of Co_4S_3 -HC-A.

Fig. S5. Discharge/charge curves of the 1200^{th} - 1214^{th} cycles at 2.0 A g⁻¹.

Fig. S6. Plots of real part of impedance (Z') in the Warburg region as a function of inverse square root of angular frequency ($\omega^{-1/2}$) for all samples. According to the following Eq. (1), the Warburg coefficient (σ_W) can be obtained from the slope of Fig. S4 plot.

$$Z' = R_s + R_{ct} + \sigma_w \omega^{-1/2} \tag{1}$$

Then, the Na⁺ diffusion coefficient (D_{Na^+}) can be calculated from Eq. (2)

$$D_{Na^{+}} = \frac{R^2 T^2}{2A^2 n^4 F^4 C_0^2 \sigma_{\omega}^2}$$
(2)

Where R is gas constant; T is temperature; A is contact area; n is number of electrons transfer per mole; F is Faraday constant; C₀ is concentration of Na⁺ in the electrode; σ_w is Warburg coefficient.

 Table. 1 The impedance, the Warburg coefficient and Na⁺ diffusion coefficient of electrodes.

Samples	$R_{ct}\left(\Omega ight)$	$\sigma_{\scriptscriptstyle W}~(\Omega~{ m cm}^2~{ m s}^{-1/2})$	D_{Na}^{+} (cm ² s ⁻¹)
НС	988	424.46	5.19×10 ⁻²¹
N/S-HC	672	419.29	5.32×10 ⁻²¹

Fig. S7. *Ex*-situ XRD pattern of the electrode material from the fresh cells.

Fig. S8. TG curve of Co₄S₃-HC in air.

Considering that the combustion product is Co_3O_4 , and Co does not volatilize within the studied temperature range. Based on the amount of Co, we calculate that the content of Co_4S_3 in the Co_4S_3 -HC is 11.9 wt%. And the Co_4S_3 -HC powder, conductive carbon black and agglomerant polyvinylidene fluoride at the mass ratio of 7:2:1 are mixed and ground. The proportion of Co_4S_3 in electrode is 8.3 wt%.