Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry

Supplementary data

Chitosan-poly(m-phenylenediamine) membrane for efficient

gold recovery from acidic aqueous solution

Zhongmin Feng, Chuanyu Zhu, Yupu Meng and Zhuqing Wang*

Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anqing

Normal University, Anqing 246133, China

* Corresponding Author:

Zhuqing Wang. Tel./fax: +86-556-5708025. Address: Anhui Key Laboratory of Photoelectric-magnetic functional materials, Anqing Normal University, Anqing 246133, China. E-mail address: wangzhuqing@vip.163.com (Z. W).

Fig. S1 (A) N₂ adsorption-desorption isotherm and (B) pore width distribution of CS/PmPD membrane.

Fig. S2 (A) Digital photo of CS/PmPD membrane before adsorption; SEM images of (B) surface and (C) cross-section of the CS/PmPD membrane; (D) Digital photo of CS/PmPD membrane after four adsorption/desorption cycles; SEM images of (E) surface and (F) cross-section of the CS/PmPD membrane after four adsorption/desorption cycles.

Materials	Temperature (K)	рН	Adsorption capacity for Au(III) (mg/g)	Refs.
Clay minerals	298	4	108.3	10
Amberjet [™] 4200	298	5	164.4	25
AT-A2 proteins	323	5	285.7	26
DAVF-PT	298	2	528	27
NH ₂ -ZIF-8	298	3	357	28
APS-LCP	298	4	261.4	29
CysR	298	2.6	714.3	30
Silica gel	298	2.5	459	31
MOFs	298	1	495	32
GH-D-P	303	3	357.2	33
UiO-66-TU	298	7	495	34
CDF-CS	298	7	478.4	12
JNU-1	298	2 M HCl	1124	35
РТВ	310	2.8	2244	36
PTL	333	3	1034	37
Fe-BTC/PpPDA	298	2-11	934	38
GA-CS	298	-	500	39
DAVFs-CS	298	2	322	40
CS/PmPD	298	3	410	Our work

Table S1. Adsorption capacity of different materials for Au(III).

Table S2 shows the unit-price of raw materials employed in preparation of the CDF-CS, Cu-TFT-Him, and CS/PmPD membrane. Table S3 shows the cost of the used adsorbent to recover 500 mg of gold from the solution. Assuming that the conversion rate of the reaction is 50%, the products of CDF-CS and Cu-TFT-Him are 400 mg and 43 mg, respectively. Based on calculations, the amount of the used adsorbent to recover 500 mg of gold from the same solution is 1.05 g of CDF-CS (\$ 0.603), 0.65 g of Cu-TFT-Him (\$ 6.440), and 1.22 g of CS/PmPD (\$ 0.161), respectively.

CS/PmPD	Dosage	unit-price \$ / kg(L)	Cu-TFT-Him	Dosage	unit-price \$ / kg(L)	CDF-CS	Dosage	unit-price \$ / kg(L)
mPD	1.0 g	27.90	DMF	10 mL	23.60	FeCl ₃ ·6H ₂ O	2.7 g	9.58
$(\mathrm{NH}_4)_2\mathrm{S}_2\mathrm{O}_8$	2.3 g	13.50	C_5H_5N	1 mL	69.20	$FeCl_2 \cdot 4H_2O$	1.0 g	297.20
CS	0.5 g	40.20	Cu(NO ₃) ₂ ·H ₂ O	0.036 g	624.70	CS	1.93 g	40.20
$C_4H_6O_6$	0.4 g	8.10	CH ₃ OH	25 mL	9.58	$C_4H_{12}N_2S_2 \\$	1.35 g	52.50
C ₂ H ₅ OH	20 mL	16.40	$C_8F_4N_2$	0.12 g	820.80	$C_2H_4O_2$	200 mL	138.75
[EMIM]Ac	2 mL	657.60				C ₂ H ₅ OH	40 mL	16.40
						CH ₃ OH	25 mL	9.58

Table S2 The selling price of raw materials required for the preparation of adsorbents

Table S3 The cost of the used adsorbent to recover 500 mg of gold

Adsorbent	Dosage / g	Cost / \$
CS/PmPD	1.22	0.161
Cu-TFT-Him	0.65	6.440
CDF-CS	1.05	0.603

References

- 10 N. Cheng, B. Wang, P. Wu, X. Lee, Y. Xing , M. Chen and B. Gao, *Environ. Pollut.*, 2021, **273**, 116448.
- 12 M. Zhao, J. Zhao, Z. Huang, S. Wang and L. Zhang, *Int. J. Biol. Macromol.*, 2019, **137**, 721-731.
- 25 J. W. Choi, M. H. Song, J. K. Bediako and Y. S. Yun, *Environ. Pollut.*, 2020, 266, 115167.
- 26 Y. L. Han, J. H. Wu, C. L. Cheng, D. Nagarajan, C. R. Lee, Y. H. Li and J. S. Chang, *Bioresource*. *Technol.*, 2017, **239**, 160-170.
- 27 F. Liu, S. Wang and S. Chen, Int. J. Biol. Macromol., 2020, 152, 1242-1251.
- 28 S. Zhou, C. Hu, W. Xu, X. Mo, P. Zhang, Y. Liu and K. Tang, *Appl. Organomet. Chem.*, 2020, **34**, e5541.
- 29 N. Saman, M. U. Rashid, J. Lye and H. Mat, *React. Funct. Polym.*, 2017, **123**, 106-114.
- 30 X. Yang, Q. Pan, Y. Ao, J. Du, Z. Dong, M. Zhai and L. Zhao, *Environ. Sci. Pollut. R.*, 2020, **27**, 38334-38343.
- 31 Y. Zhang, R. Qu, T. Xu, Y. Zhang, C. Sun, C. Ji and Y. Wang, *Front. Chem.*, 2019, **7**, 577.
- 32 S. Lin, D. H. Kumar Reddy, J. K. Bediako, M. H. Song, W. Wei, J. A. Kim and Y.S. Yun, *J. Mater. Chem. A*, 2017, **5**, 13557-13564.
- 33 W. Liu, P. Yin, X. Liu, X. Dong, J. Zhang and Q. Xu, Chem. Eng. Res. Des., 2013, 91, 2748-2758.
- 34 X. Chao, S. X. Wang, L. B. Zhao, Y. Li, Y. Yang and J. H. Peng, *Polymers*, 2018, **10**, 159.
- 35 H. L. Qian, F. L. Meng, C. X. Yang and X. P. Yan, *Angew. Chem. Int. Ed.*, 2020, **132**. 17760-17766.
- 36 Q. Yang, J. Cao, F. Yang, Y. Liu, M. Chen, R. Qin and P. Yang, *Chem. Eng. J.*, 2021, **416**, 129066.
- 37 F. Yang, Z. Yan, J. Zhao, S. Miao, D. Wang and P. Yang, J. Mater. Chem. A, 2020, 8, 3438-3449.
- 38 D. T. Sun, N. Gasilova, S. Yang, E. Oveisi and W. L. Queen, J. Am. Chem. Soc., 2018, 140, 16697-16703.
- 39 S. I. Park, I. S. Kwak, S. W. Won and Y. S. Yun, J. Hazard. Mater., 2013, 248, 211-218.
- 40 F. Liu, S. Hua, L. Zhou and B. Hu, Int. J. Biol. Macromol., 2021, 173, 457-466.