Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

PEDOT: PSS treated laser induced graphene based smart textile dry electrodes for

long term ECG monitoring

Yogita Maithani, B.R. Mehta, and J.P. Singh*

Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India * E-mail: jpsingh@physics.iitd.ac.in

Atomic	Carbon	Nitrogen	Oxygen	Sulphur
Concentration				
(%)				
Bare Kevlar	69.902	13.788	16.310	0
LIG/PEDOT: PSS	82.393	6.183	10.839	0.585
treated Kevlar				

Table S1. Atomic concentration table of Kevlar and PEDOT: PSS treated LIG Kevlar.

Material specifications of PEDOT: PSS treated LIG Kevlar Electrode				
Material	Polymer			
Backing material	Kevlar fabric			
Sensor	PEDOT:PSS and laser induced			
	graphne			
Eye protection	May cause eye irritation			

Table S2. Basic specifications of proposed PEDOT: PSS treated LIG Kevlar Electrode.

Figure S1: I-V characteistics of PEDOT: PSS treated LIG Kevlar fabric.

Figure S2: ECG signal obtained using PEDOT: PSS-LIG treated Kevlar dry electrode while subject was moving

Figure S3: Optical images of conventional wet electrodes and fabricated dry electrode.

Figure S4: The variation of contact impedance of Al metal electrode with frequency.

Figure S5: (a) Resistance of PEDOT: PSS-treated Kevlar electrode using a resistance meter before washing. (b) washing of PEDOT: PSS-treated Kevlar electrode with DI water, and (c) resistance after drying the fabricated dry electrode.

Figure S6: ECG signal recorded using proposed PEDOT: PSS-LIG treated Kevlar dry electrodes after 48 hours of uses.