Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

for

Amidines from cyclic amines and nitriles in the presence of zinc(II): Other nitriles in place of acetonitrile

Nina Podjed and Barbara Modec

Department of Chemistry and Chemical Technology University of Ljubljana Večna pot 113, 1000 Ljubljana, Slovenia

E-mails: barbara.modec@fkkt.uni-lj.si, nina.podjed@fkkt.uni-lj.si

Contents

1.	Crystal structures of zinc(II) complexes with intact amines	S3
2.	Intermolecular interactions and connectivity patterns	S8
3.	Infrared spectroscopy	S11
4.	NMR spectroscopy	S24

List of compounds

[Zn(quin) ₂ (pipe)]·CH ₃ CH ₂ CN	$1 \cdot CH_3 CH_2 CN$
$[Zn(quin)_2(pipe)_2] \cdot CH_3 CH_2 CN$	2·CH₃CH₂CN
[Zn(quin) ₂ (pipe) ₂]·2.5PhCN	2·2.5PhCN
[Zn(quin)₂(pyro)]	3
[Zn(quin) ₂ (pyro) ₂]	4
[Zn(quin) ₂ (pipepropioam)]	5
pipepropioamH[Zn(quin) ₃]	6
pyropropioamH[Zn(quin)₃]	7
[Zn(quin)2(pipebenzoam)]	8a, 8b
[Zn(quin) ₂ (pyrobenzoam)]	9a, 9b
pipebenzoamH[Zn(quin)₃]	10
pyrobenzoamH[Zn(quin)₃]	11
pyrobenzoamH[Zn(quin)₃]·[Zn(quin)₂(pyrobenzoam)]	12

1. Crystal structures of zinc(II) complexes with intact amines

The zinc(II) complexes with amines, piperidine, pyrrolidine and morpholine, form part of our previous study.^{S1} During current investigation, single-crystals of a few more complexes with piperidine or pyrrolidine were obtained. Of particular importance are the crystal structures of the pyrrolidine complexes which have not been determined before. A brief description of the structures of $[Zn(quin)_2(pyro)]$ (**3**) and $[Zn(quin)_2(pyro)_2]$ (**4**) is given below. The crystal data of the complexes with amines are given in Table S1.

	1.CH3CH2CN	2·CH ₃ CH ₂ CN	2·2.5PhCN	3	4
Empirical formula	$C_{28}H_{28}N_4O_4Zn$	$C_{33}H_{39}N_5O_4Zn$	$C_{47.5}H_{46.5}N_{6.5}O_4Zn$	$C_{24}H_{21}N_3O_4Zn$	$C_{28}H_{30}N_4O_4Zn$
Formula weight	549.91	635.06	837.78	480.81	551.93
Crystal system	monoclinic	monoclinic	triclinic	monoclinic	monoclinic
Space group	Сс	P 21/n	P-1	C 2/c	P 2/c
<i>Т</i> [К]	150.00(10)	150.05(10)	150.00(10)	150.00(10)	150.00(10)
λ [Å]	0.71073	0.71073	0.71073	0.71073	0.71073
a [Å]	9.57440(10)	13.8766(5)	7.6600(2)	13.7196(4)	18.6335(9)
<i>b</i> [Å]	24.2668(4)	7.5530(2)	14.7528(5)	8.0117(2)	13.7763(6)
<i>c</i> [Å]	10.97570(10)	14.5911(5)	18.8900(6)	19.1729(5)	19.9630(13)
α [°]	90	90	91.319(3)	90	90
β[°]	96.5300(10)	91.303(3)	97.791(2)	105.783(3)	103.298(6)
γ [°]	90	90	97.798(2)	90	90
<i>V</i> [ų]	2533.55(5)	1528.90(9)	2093.56(11)	2027.98(10)	4987.1(5)
Ζ	4	2	2	4	8
D _{calc} [g/cm ³]	1.442	1.379	1.329	1.575	1.470
μ [mm ⁻¹]	1.012	0.849	0.639	1.250	1.028
Collected reflections	37001	13910	37788	29139	31372
Unique reflections	6999	4156	11268	2929	13077
Observed reflections	6796	3707	9346	2815	6040
R _{int}	0.0231	0.0228	0.0306	0.0338	0.0583
$R_1 \left(l > 2\sigma(l) \right)$	0.0233	0.0268	0.0331	0.0243	0.0581
wR ₂ (all data)	0.0580	0.0687	0.0827	0.0663	0.1731

Table S1. Crystallographic data for 1·CH₃CH₂CN-4.

^{S1} N. Podjed, B. Modec, M. M. Alcaide and J. López-Serrano, *RSC Adv.*, 2020, **10**, 18200–18221.

The $[Zn(quin)_2(pyro)]$ complex molecules of **3** feature a metal ion in a five-coordinate environment which consists of two *N*,*O*-bidentate chelating quinaldinate ions and a monodentate pyrrolidine bound *via* amine nitrogen. As shown by the τ parameter of 0.04, the N₃O₂ donor set defines vertices of a slightly distorted square pyramid. The quinaldinate-to-zinc(II) and the amine-to-zinc(II) bonds are comparable to the ones observed for $[Zn(quin)_2(pipe)]$, a monopiperidine complex which was found in $[Zn(quin)_2(pipe)]\cdot cis$ - $[Zn(quin)_2(pipe)_2]$.^{S1} The differences between the pair may be ascribed to crystallographic disorder of pyrrolidine ligand in **3**. Hydrogen bonds of the NH···COO⁻ type with the length of 2.856(2) Å link the $[Zn(quin)_2(pyro)]$ complex molecules into supramolecular layers. These layers stack along *c* axis.

Figure S1. ORTEP drawing of the $[Zn(quin)_2(pyro)]$ complex molecule in **3**. The displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table S2.	Relevant	geometric	parameters	[Å] o	f [Zn(quin)2(pyrc	o)] (3)	as	compared	to	а	piperidine
analogue.											

Compound	Zn–N(amine)	Zn–N(quin⁻)	Zn–O(quin⁻)	τ
[Zn(quin)₂(pyro)] (3)	2.0291(19)	2.2093(10)	1.9921(9)	0.04
[Zn(quin) ₂ (pipe)]· <i>cis</i> -[Zn(quin) ₂ (pipe) ₂] ^[a]	2.0670(18)	2.1906(18), 2.1962(17)	1.9785(15), 1.9888(14)	0.35

^[a] Previous work.^{S1} The data pertain to the five-coordinate species.

^{S1} N. Podjed, B. Modec, M. M. Alcaide and J. López-Serrano, *RSC Adv.*, 2020, **10**, 18200–18221.

Figure S2. Intermolecular interactions in $[Zn(quin)_2(pyro)]$ (3). Section of a supramolecular layer, viewed along *c* axis.

The $[Zn(quin)_2(pyro)_2]$ complex molecules of **4** feature zinc(II) in a six-coordinate environment which consists of two *N*,*O*-bidentate chelating quinaldinate ions and two monodentate pyrrolidine ligands. The N₄O₂ donor set defines vertices significantly longer than the ones found in a monoamine complex $[Zn(quin)_2(pyro)]$ (**3**). As shown in Table S3, the coordination bonds in $[Zn(quin)_2(pyro)_2]$ are similar to the ones in the piperidine analogue, $[Zn(quin)_2(pipe)_2]$.^{S1} In **4**, hydrogen bonds of the NH···COO⁻ type with the lengths of 2.921(4)–2.987(4) Å link complex molecules into supramolecular chains. The chains propagate along *b* axis.

Figure S3. ORTEP drawing of the [Zn(quin)₂(pyro)₂] complex molecule in **4**. The displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.

Table S3. Relevant geometric parameters [Å] of $[Zn(quin)_2(pyro)_2]$ (4) as compared to a piperidine analogue.

Compound	Zn–N(amine)	Zn–N(quin⁻)	Zn–O(quin⁻)
[Zn(quin) ₂ (pyro) ₂] (4)	2.166(3)–2.189(3)	2.240(3)–2.279(3)	2.060(2)–2.083(3)
[Zn(quin) ₂ (pipe) ₂]·2CH ₃ CN ^[a]	2.2168(15)	2.2520(14)	2.0526(12)

^[a] Previous work.^{S1}

^{S1} N. Podjed, B. Modec, M. M. Alcaide and J. López-Serrano, *RSC Adv.*, 2020, **10**, 18200–18221.

Figure S4. Intermolecular interactions in [Zn(quin)₂(pyro)₂] (4). Section of a supramolecular chain.

2. Intermolecular interactions and connectivity patterns in the structures of amidine compounds

Compound	Hydrogen bond	Donor…acceptor distance [Å]
pipepropioamH[Zn(quin)₃] (6)	NH ₂ ⁺ ···COO ⁻	2.866(2)
	NH₂⁺…N(quin⁻)	2.938(2)
pyropropioamH[Zn(quin)₃] (7)	NH ₂ ⁺ ···COO ⁻	2.900(2)
	NH₂⁺…N(quin⁻)	2.991(2)
[Zn(quin) ₂ (pipebenzoam)] (8a)	NH…COO [_]	2.898(2)
	NH…COO [_]	2.9114(18)
[Zn(quin) ₂ (pipebenzoam)] (8b)	NH…COO [_]	2.941(3)
[Zn(quin) ₂ (pyrobenzoam)] (9a)	NH…COO [_]	3.0016(19)
[Zn(quin) ₂ (pyrobenzoam)] (9b)	NH…COO [_]	2.915(2)
	NH…COO [_]	2.970(2)
pyrobenzoamH[Zn(quin)₃] (11)	NH ₂ ⁺ ···COO ⁻	2.830(5)
pyrobenzoamH[Zn(quin) ₃]·[Zn(quin) ₂ (pyrobenzoam)] (12)	NH…COO [_]	2.950(3)
	NH ₂ ⁺ ···COO ⁻	2.831(4)
	NH₂ ⁺ ···COO [−]	2.955(4)

Figure S5. Section of a supramolecular chain in pyrobenzoamH[Zn(quin)₃] (**11**): the $NH_2^+\cdots COO^-$ and the $NH_2^+\cdots N(quin^-)$ contacts are 2.830(5) and 3.141(5) Å, respectively.

Figure S6. Supramolecular connectivity in pyrobenzoamH[Zn(quin)₃]·[Zn(quin)₂(pyrobenzoam)] (**12**): a short section of an infinite chain of ions (top) and a dimer of complex molecules (bottom).

Figure S7. Packing in the structure of **12**. Layers of the $[Zn(quin)_2(pyrobenzoam)]$ molecules, shown in grey colour, alternate with layers of the chains consisting of pyrobenzoamH⁺ cations (coloured blue) and $[Zn(quin)_3]^-$ anions (coloured green). The supramolecular chains propagate along *a* axis. The view is along the chains.

3. Additional remarks on the infrared spectra

Presence of the coordinated amines, *i.e.*, piperidine and pyrrolidine, in compounds **1-CH₃CH₂CN-3** is corroborated by the stretching vibrations of the N–H and C–H bonds. The N–H stretching absorptions appear in the 3231–3126 cm⁻¹ spectral region, whereas the C–H stretching bands occur in the 2960–2855 cm⁻¹ region. With the amines being secondary amines, one v(N–H) band is observed. The respective bands are of weak to medium intensity.

Compound	v(N–H)	v(C–H)		
$[7n(auin)_{a}(nine)]_{a}CH_{a}CH_{a}CN(1,CH_{a}CH_{a}CN)$	3126	hands around 2027		
$[2n(quin)_2(pipe)_2] \cdot CH_3CH_2CN (2 \cdot CH_3CH_2CN)$	3221	2931, 2854		
[Zn(quin) ₂ (pipe) ₂]·2.5PhCN (2·2.5PhCN)	3231	2932, 2855		
[Zn(quin) ₂ (pyro)] (3)	3171	bands around 2956		
[Zn(quin) ₂ (pyro) ₂] (4) ^[a]	3188	2953, 2873		

Table S5. Characteristic bands $[cm^{-1}]$ in the spectra of Zn(II) complexes with amines.

^[a] Previous work.^{S1}

Nitrile solvent molecules are characterized by the C=N stretching frequency which occurs according to the literature data for the aliphatic nitriles at 2260–2240 cm⁻¹ and for benzonitriles at 2240–2220 cm⁻¹.⁵² Accordingly, [Zn(quin)₂(pipe)]·CH₃CH₂CN (**1·CH₃CH₂CN**) shows a band at 2244 cm⁻¹, whereas [Zn(quin)₂(pipe)₂]·2.5PhCN (**2·2.5PhCN**) absorbs at 2226 cm⁻¹.

^{S1} N. Podjed, B. Modec, M. M. Alcaide and J. López-Serrano, *RSC Adv.*, 2020, **10**, 18200–18221.

⁵² N. B. Colthup, L. H. Daly and S. E. Wiberley, *Introduction to Infrared and Raman Spectroscopy*, Academic Press, San Diego, CA, 3rd. edn., 1990.

Figure S8. Infrared spectrum of [Zn(quin)₂(pipe)]·CH₃CH₂CN (**1·CH₃CH₂CN**).

Figure S9. Infrared spectrum of [Zn(quin)₂(pipe)₂]·CH₃CH₂CN (2·CH₃CH₂CN).

Figure S10. Infrared spectrum of [Zn(quin)₂(pipe)₂]·2.5PhCN (**2·2.5PhCN**).

Figure S11. Infrared spectrum of [Zn(quin)₂(pyro)] (**3**).

Figure S12. Infrared spectrum of [Zn(quin)₂(pipepropioam)] (5).

Figure S13. Infrared spectrum of pipepropioamH[Zn(quin)₃] (6).

Figure S14. Infrared spectrum of pyropropioamH[Zn(quin)₃] (7).

-man m 95 06 85 80 Transmittance [%] 75 70 65 60 3204.75 2924.85 -2853.17 -1246.87 1174.92 1115.76 1509.77 1461.70 1356.85 68.08 5 877. 853. 800. 521. 496. 434. <u>3</u>36. ∞ Ć 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber [cm⁻¹]

Figure S15. Infrared spectrum of [Zn(quin)₂(pipebenzoam)] (8).

Figure S16. Infrared spectrum of [Zn(quin)₂(pyrobenzoam)] (9).

Figure S17. Infrared spectrum of pipebenzoamH[Zn(quin)₃] (10).

Figure S18. Infrared spectrum of pyrobenzoamH[Zn(quin)₃] (**11**).

Figure S19. Infrared spectrum of pyrobenzoamH[Zn(quin)₃]·[Zn(quin)₂(pyrobenzoam)] (**12**).

5. ¹H and ¹³C NMR spectroscopy

Figure S20. ¹H NMR spectrum of [Zn(quin)₂(pipe)]·CH₃CH₂CN (1·CH₃CH₂CN) in DMSO-d₆.

-130000 ¹H NMR ((CD₃)₂SO, 500 MHz) compound **3** DMSO -0.00 TMS -120000 -2.63 -2.62 -2.50 8.91 8.89 8.88 8.78 8.78 8.41 8.21 8.21 8.20 8.03 8.03 8.03 7.84 7.84 $\begin{array}{c} 1.50 \\ 1.49 \\ 1.47 \\ 1.47 \\ 1.45 \\ 1.45 \\ 1.45 \end{array}$ 7.83 -110000 100000 -90000 -80000 -70000 =0 -60000 -50000 -40000 -30000 -20000 -10000 -0 2.00 √ 2.02 √ 2.01 √ 2.00 √ 4.25 - ± Ψ 1.994 2.004 4.33---10000 4.0 f1 (ppm) 3.5 2.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

Figure S21. ¹H NMR spectrum of [Zn(quin)₂(pyro)] (**3**) in DMSO-*d*₆.

Figure S22. ¹H NMR spectrum of $[Zn(quin)_2(pipepropioam)]$ (5) in DMSO- d_6 with the addition of trifluoroacetic acid.

Figure S23. ¹H NMR spectrum of pipepropioamH[Zn(quin)₃] (6) in DMSO- d_6 .

Figure S24. ¹³C NMR spectrum of pipepropioamH[Zn(quin)₃] (6) in DMSO- d_6 .

Figure S25. ¹H NMR spectrum of pyropropioamH[Zn(quin)₃] (7) in DMSO- d_6 .

Figure S26. ¹³C NMR spectrum of pyropropioamH[Zn(quin)₃] (7) in DMSO- d_6 .

Figure S27. ¹H NMR spectrum of [Zn(quin)₂(pipebenzoam)] (8) in DMSO-d₆.

Figure S28. ¹³C NMR spectrum of $[Zn(quin)_2(pipebenzoam)]$ (8) in DMSO- d_6 .

Figure S29. ¹H NMR spectrum of [Zn(qin)₂(pyrobenzoam)] (9) in DMSO-*d*₆.

Figure S30. ¹³C NMR spectrum of $[Zn(qin)_2(pyrobenzoam)]$ (9) in DMSO- d_6 .

Figure S31. ¹H NMR spectrum of pipebenzoamH[Zn(quin)₃] (**10**) in DMSO- d_6 .

Figure S32. ¹³C NMR spectrum of pipebenzoamH[Zn(quin)₃] (**10**) in DMSO- d_6 .

Figure S33. ¹H NMR spectrum of pyrobenzoamH[Zn(quin)₃] (**11**) in DMSO- d_6 .

Figure S34. ¹³C NMR spectrum of pyrobenzoamH[Zn(quin)₃] (**11**) in DMSO- d_6 .