Supporting Information

Nitrogen-doped BiOBr nanosheets with preferentially exposed

(102) facets enhanced visible-light photoreactivity

Guangbi Li,^{*a,b} Jie Yang,^b Xinhui Yang,^c Mila Liu,^b Bingyan Liu,^d Zhuolan Li,^e Kexin Bao,^e Yurong Wang,^e Zhiwei Wang,^e Huan Zhou^a

^a College of Chemical Engineering & Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China

^b Key Laboratory of Marine Resource Chemistry & Food Technology, Ministry of Education, College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin 300457, P. R. China

^c State Key Laboratory of Chemical Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China

^d Tianjin Tiandi Chuangzhi Technology Development Co., Ltd., Tianjin 300392, P. R. China

^e State Key Laboratory of Food Nutrition and Safety, College of Food Science & Engineering, Tianjin University of Science & Technology, Tianjin 300457, P. R. China

<u>*Corresponding Author</u>: Dr. Guangbi Li School of Chemical Engineering and Materials Science Tianjin University of Science and Technology, Tianjin 300457, P. R. China Tel: +86-22-60600823 E-mail: gbli@tust.edu.cn

Fig. S1 XRD amplified patterns of pure BiOBr and xN-BiOBr.

Fig. S2 The particle size distributions of (a) BiOBr, (b) 0.6N-BiOBr, (c) 0.9N-BiOBr and (d)

1.2N-BiOBr.

Fig. S3 N₂ adsorption isotherms of pure BiOBr and *x*N-BiOBr.

Fig. S4 Typical high-resolution XPS spectra of N 1s of pure BiOBr and 0.9N-BiOBr.

We selected a typical 0.6N-BiOBr as a model photocatalyst based on the results of the previous study, and conducted experiments on the effect of pH on the photocatalytic performance of the samples under visible-light irradiation for 10 min in solutions with different pH values. The pH value of the original reaction solution was 6.9 after adding the 0.6N-BiOBr, and the pH of the reaction solution was adjusted to 9.3 by ammonia water, and to 2.1 and 4.0 by 0.05 mol L^{-1} dilute hydrochloric acid.

Fig. S5 Photodegradation performance of a typical 0.6N-BiOBr sample after visible-light irradiation for 10 min at various pH values. (Reaction conditions: RhB 10 mg L^{-1} ; photocatalyst: 0.1 g L^{-1})

Fig. S6 XRD pattern of RhB.

Entry	Catalysts		Reaction conditions	Degradation	References	
		Temperature (°C)	Load of catalyst (g L ⁻¹)	Reaction time (min)	performance	
1	SiO ₂ -Au GSH-BPEI	25	0.25	600	38%	1
2	$F-Bi_2WO_6 (R_F=0.6)$	25	1.0	180	85%	2
3	ZnO-10%RGO	25	0.25	120	98%	3
4	BPZ-4	25	0.5	30	99%	4
5	S3-BiOBr	25	0.33	20	99%	5
6	BOB-CNC-10%350-2h	25	0.2	60	97%	6
7	BM55	25	0.5	60	98%	7
8	0.9N-BiOBr	10	0.1	45	99%	This work

Table S1 Comparison of photodegradation of RhB via use of different photocatalysts under visible-light irradiation.

1 To eliminate differences in the exposure of active sites, the surface-area-normalized kinetic

2 constants (k/S_{BET}) of pure BiOBr, 0.6N-BiOBr, 0.9N-BiOBr and 1.2N-BiOBr were calculated

- 3 as 0.36, 1.56, 3.52, and 0.85 mg·m⁻²·min⁻¹, respectively (Table S2).
- 4 Table S2 Kinetic constants, BET surface areas and surface-area- normalized kinetic constants of xN-BiOBr
- 5 and pure BiOBr samples.

Sample	BiOBr	0.6N-BiOBr	0.9N-BiOBr	1.2N-BiOBr
<i>k</i> (min ⁻¹)	0.532×10 ⁻²	3.229×10 ⁻²	8.152×10 ⁻²	1.946×10 ⁻²
$S_{\rm BET} \left({ m m}^2 \cdot { m g}^{-1} ight)$	17.706	20.691	23.174	22.969
$k/S_{\rm BET}$ (g·m ⁻² ·min ⁻¹)	0.30×10 ⁻³	1.56×10 ⁻³	3.52×10 ⁻³	0.85×10-3
k/S _{BET} (mg·m ⁻² ·min ⁻¹)	0.36	1.56	3.52	0.85

6

7 Table S3 The atomic ratio of Bi, O, Br, N and N/Bi in pure BiOBr and xN-BiOBr samples determined from

8 XPS spectra.

Element (atom%)	BiOBr	0.6N-BiOBr	0.9N-BiOBr	1.2N-BiOBr
Ν	0	1.24	3.23	2.42
0	41.10	36.10	26.04	24.97
Br	30.80	32.74	34.74	34.85
Bi	28.1	29.92	35.99	37.76
N/Bi	0	4.14×10 ⁻²	8.97×10 ⁻²	6.41×10 ⁻²

9 References

- 10 1 B. Weng, K. Lu, Z. Tang, H. Chen, Y. Xu, Nat. Commun., 2018, 9: 1543.
- 11 2 H. Fu, S. Zhang, T. Xu, Y. Zhu, J. Chen, Environ. Sci. Technol., 2008, 42 (6), 2085–2091.
- 12 3 B., Weng, M. Yang, N. Zhang, Y. Xu, J. Mater. Chem. A, 2014, 2 (24), 9380-9389.
- 13 4 J. Zhou, J. Zhou, Z. Hu, L. Wang, Mater. Sci. Semicond. Process., 2019, 90: 112-119.
- 14 5 L. Xu, W. Chen, S. Ke, M. Zhu, W. Qiu, N. Liu, Namuangruk, S.; Maitarad, P.; Impeng, S.; Tang, L., Catal.
- **15** Sci. Technol., 2019, **9 (21)**: 5953–5961.
- 16 6 W. Zhou, H. Ye, Z. Zhong, Q. Lu, R. Liu, M. Zhang, Z. Garba, L. Wang, Z. Yuan, *Cellulose*, 2021, 28 (15):
 17 9893–9905.
- 18 7 W. Lou, L. Wang, Y. Zhang, Y. Xing, Appl. Organomet. Chem., 2021, 35 (9): e6324.
- 19

20