Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Computational design of a notable nitrogen-rich energetic compound on the basis of Diels-Alder reaction

Junqing Yang^{ab*}, Gazi Hao^c, Rui Guo^a, Hu Guo^c, Wei Jiang^c, Jianguo Zhang^{b*}

^a School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China ^b State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, China ^c National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China.

Table of Contents

All involved computational details and formulas:	.S3
Figure S1. Reaction activation Gibbs free energy (ΔG^{\neq} , in kJ.mol ⁻¹) of each D–A reaction (Series a-d)	.S4
Table S1. $\Delta G^{\neq}_{\text{dist-dienee}}, \Delta G^{\neq}_{\text{dist-dienophile}}, \Delta G^{\neq}_{\text{dist}}, \Delta G^{\neq}_{\text{int}}, \text{ and } \Delta G^{\neq}$ (in kJ.mol ⁻¹) of the D–A reactions between	
ethylene and 17 aromatic dienes, together with the NICS(0) and NICS (1) values (in ppm) of these dienes	.S4
Figure S2. Optimized geometries of involving compounds in Reaction process of EC-1	.S5
Figure S3. Electrostatic potential (ESP) on the 0.001 au molecular surface of EC-1.	.S5
Figure S4. The area percent in electrostatic potential range of EC-1	.S5
Figure S5. Possible pyrolysis processes for EC-1, together with the ΔE_{BD} and ΔE^{\neq} , in kJ.mol ⁻¹	.S6
Figure S6. Energy profile and the optimized geometries of involving compounds during the most possible	
pyrolysis process (N ₂ elimination process) of EC-1	.S6
Table S2. <i>OB</i> (%), ρ (g.cm ⁻³), $\Delta H_{\rm f}^{\circ}(s)$ (kcal.mol ⁻¹), <i>D</i> (km.s ⁻¹), <i>P</i> (GPa), ΔV (Å ³), and $\rho Q_{\rm max}$ (kcal.cm ⁻³) of	
EC-1, trans-BIT, and RDX.	.S6
Table S3. Cell parameters predicted with Dreiding force field for EC-1	.S7
Figure S7. The most possible crystal packing of EC-1 predicted by using Dreiding force field.	.S7
Figure S8. The predicted IR spectrum of EC-1 at the M06-2X/6-31G(d) level	.S7
Figure S9. The predicted IR spectrum of cyclopentadiene (0N) at the M06-2X/6-31G(d) level (up) and its	
experimental IR spectrum (bottom)	.S8
The Cartesian coordinates of all involved compounds in the reaction process of EC-1 optimized at the	
M06-2X/6-31G(d) level	.S9
The Cartesian coordinates of all involved compounds in the N ₂ elimination process of EC-1 optimized	
at the M06-2X/6-31G(d) levelS	511
ReferencesS	513

All involved computational details and formulas:

All geometry optimizations and frequency calculations were performed with DFT method at M06-2X/6-31G(d) and B3PW91/6-31G(d,p) levels by using Gaussian 09 software¹. Frequency calculations ensure that reactants and products have not any imaginary frequency and the TSs have only one imaginary frequency. The intrinsic reaction coordinate (IRC) analyses confirmed that the TSs truly associate to the minima of the reactants and the products.

The ρ was predicted by equation (1):²

$$\rho = \alpha_1 (M/V_{\rm m}) + \beta_1 (v \sigma_{\rm tot}^2) + \gamma_1 \tag{1}$$

where *M* is the molecular weight (g.mol⁻¹); $V_{\rm m}$ is the average molar volume within the 0.001 a.u. electron density contour (cm³.mol⁻¹); *v* is the degree of balance between positive and negative potential on the molecular surface; $\sigma^2_{\rm tot}$ is a measure of variability of the electrostatic potential (kcal².mol⁻²); The coefficients α_1 , β_1 , and γ_1 at the B3PW91/6-31G(d,p) level are 0.9183, 0.0028, and 0.0443, respectively.²

The $\Delta H_{\rm f}^{\rm o}(s)$ was estimated using the following equations (2-3):³

$$\Delta H_{\rm f}^{\circ}(s) = \Delta H_{\rm f}^{\circ}(g) - \Delta H_{\rm sub} \tag{2}$$

$$\Delta H_{\rm sub} = \alpha_2 A_{\rm S}^2 + \beta_2 (v \sigma_{\rm tot}^2)^{0.5} + \gamma_2 \tag{3}$$

where $\Delta H_{\rm f}^{\circ}({\rm g})$ is the gas-phase heat of formation which was estimated by designing the following isodesmic reaction (4); $\Delta H_{\rm sub}$ is the sublimation enthalpy; $A_{\rm S}$ is the area of the isosurface of 0.001 e/Bohr³ electron density of the molecule (Å²); The coefficients α_2 , β_2 , and γ_2 at the B3PW91/6-31G(d,p) level are 4.43×10⁻⁴, 2.0599, and -2.4825, respectively.³

$$N \longrightarrow NO_{2} + 4CH_{4} \longrightarrow N \longrightarrow + 4CH_{3}NO_{2} + 4CH_{4} \longrightarrow (4)$$

Thermal stability was examined by calculating the bond dissociation energy (ΔE_{BD}) and the decomposition activation energy barrier (ΔE^{\neq}) of all possible pyrolysis processes. The sensitivity was evaluated by predict the free space in the lattice (ΔV)^{4, 5} and the maximum heat of detonation per unit volume (ρQ_{max})⁴⁻⁶. The formulas are as follows:

$$\Delta E_{\rm BD}({\rm A-B}) = E_{\rm A} + E_{\rm B} - E_{\rm A-B}$$
(5)

$$\Delta E^{\neq} = E_{\rm TS} - E_{\rm A-B} \tag{6}$$

$$\Delta V = V_{\rm eff} - V_{\rm int} \tag{7}$$

where A–B is the neutral reactant; A· and B· are the corresponding radical products after the dissociation of A–B bond; TS is the transition state in the pyrolysis process; E_{A} , E_{B} , E_{A-B} , and E_{TS} are their corresponding total energies after the correction of the zero-point energy; V_{eff} is the effective volume of the molecule that would corresponding to 100% packing of the unit cell, which is usually quite similar to the 0.001 au contour of the molecule's electronic density; V_{int} is the space encompassed by the 0.003 au contour of the molecule's electronic density.

The polymorph of **EC-1** was predicted by searching the molecular packings among seven most possible space groups (C2/c, $P2_1$, $P2_1/c$, P1, $P2_12_12_1$, Pbca, and $Pna2_1$) by using Dreiding force field⁷ and Polymorph module of Materials Studio software⁸. The electrostatic and van der Waals interactions are selected to Ewald and Atom based, respectively.

Figure S1. Reaction activation Gibbs free energy (ΔG^{\neq} , in kJ.mol⁻¹) of each D–A reaction (Series a-d).

Table S1. $\Delta G^{\neq}_{\text{dist-diene}}$, $\Delta G^{\neq}_{\text{dist-dienophile}}$, $\Delta G^{\neq}_{\text{dist}}$, $\Delta G^{\neq}_{\text{int}}$, and ΔG^{\neq} (in kJ.mol⁻¹) of the D–A reactions between ethylene and 17 aromatic dienes, together with the NICS(0) and NICS (1) values (in ppm) of these dienes.

Dienes	$\Delta G^{\neq}_{\text{dist-diene}}$	$\Delta G^{\neq}_{\text{dist-dienophile}}$	$\Delta G^{\neq}_{\mathrm{dist}}$	$\Delta G^{\neq}_{\mathrm{int}}$	ΔG^{\neq}	NICS(0)	NICS (1)
0N	63.74	25.80	89.54	5.25	94.79	-2.7260	-5.4644
1N-I	87.21	34.35	121.56	4.18	125.74	-2.7869	-6.7577
1N-II	63.32	22.39	85.71	3.20	88.92	-0.8175	-6.2295
1N-III	101.56	51.91	153.47	-16.92	136.55	-15.7534	-11.9220
2N-I	110.02	42.07	152.10	21.76	173.85	-3.1729	-7.9993
2N-II	88.21	30.02	118.23	-0.83	117.39	-1.3625	-7.4592
2N-III	70.93	22.47	93.40	-2.84	90.56	-0.0645	-7.1982
2N-IV	103.69	48.53	152.22	-18.63	133.59	-14.4206	-12.1437
2N-V	165.79	49.19	214.97	17.39	232.36	-15.3908	-13.0016
3N-I	92.51	25.73	118.24	1.76	120.01	-0.5641	-9.1562
3N-II	130.29	56.17	186.46	-3.52	182.94	-14.7492	-14.4732
3N-III	133.68	59.17	192.84	-14.00	178.84	-13.8860	-12.9131
3N-IV	116.96	47.20	164.16	-23.55	140.61	-13.0269	-12.5978
3N-V	210.95	47.84	258.79	24.89	283.68	-15.1184	-14.4956
4N-I	122.25	27.99	150.24	2.88	153.12	-5.0621	-10.5709
4N-II	142.69	54.20	196.89	-16.22	180.67	-14.1547	-14.8677

Figure S2. Optimized geometries of involving compounds in Reaction process of EC-1

Figure S3. Electrostatic potential (ESP) on the 0.001 au molecular surface of EC-1 (blue and red points denote the surface local minima and maxima, respectively).

Figure S4. The area percent in electrostatic potential range of EC-1

Figure S5. Possible pyrolysis processes for **EC-1**, together with the ΔE_{BD} and ΔE^{\neq} , in kJ.mol⁻¹.

Figure S6. Energy profile and the optimized geometries of involving compounds during the most possible pyrolysis process (N₂ elimination process) of EC-1

Table S2. *OB* (%), ρ (g.cm⁻³), $\Delta H_{\rm f}^{\circ}$ (s) (kcal.mol⁻¹), *D* (km.s⁻¹), *P* (GPa), ΔV (Å³), and $\rho Q_{\rm max}$ (kcal.cm⁻³) of EC-1, *trans*-BIT, and RDX.

	OB	ρ	$\Delta H_{\rm f}^{\rm o}({\rm s})$	D	Р	ΔV	$ ho Q_{ m max}$
EC-1	-23.18	1.89	36.99	8.851	35.8	47	2.70
Trans-BIT ⁹	0	2.06	-95.28	9.473	42.2	72	3.08
RDX ¹⁰	-21.61	1.82	18.9±1.2	8.754	34.7	46	2.71

Table S3. Cell parameters predicted with Dreiding force field for EC-1

parameters	C2/c	<i>P</i> 1	<i>P</i> 2 ₁	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	Pbca	$Pna2_1$
Ζ	8	2	2	4	4	8	4
$\rho(\text{g.cm}^{-3})$	1.85	1.87	1.86	1.86	1.90	1.87	1.84
$E(\text{kcal.mol}^{-1}.\text{cell}^{-1})$	43.32	42.69	42.88	42.76	42.16	43.08	43.18
<i>a</i> (Å)	16.72	12.66	6.55	7.90	11.44	7.87	13.41
$b(\text{\AA})$	14.10	7.14	11.01	22.55	6.82	11.02	6.55
c(Å)	12.09	6.46	6.85	7.10	12.40	22.68	11.33
α (°)	90	108.11	90	90	90	90	90
β(°)	44.11	117.88	90.83	51.03	90	90	90
γ(°)	90	78.71	90	90	90	90	90

Figure S7. The most possible crystal packing of EC-1 predicted by using Dreiding force field.

Figure S8. The predicted IR spectrum of EC-1 at the M06-2X/6-31G(d) level.

The IR spectrum was predicted at the M06-2X/6-31G(d) level, with a scale factor of 0.947. For the complexity of vibration modes, only some characteristic vibration modes are assigned here. In **EC-1**, 1795.27 cm⁻¹ belongs to NO₂ antisymmetric stretching vibration, 1492.50 cm⁻¹ to CH₂ shear vibration, 1456.49 cm⁻¹ to NO₂ symmetric stretching vibration, 793.60-949.65 cm⁻¹ to deformation vibration of the molecular skeleton.

Figure S9. The predicted IR spectrum of cyclopentadiene (0N) at the M06-2X/6-31G(d) level (up) and its experimental IR spectrum (bottom)

In comparison with the predicted and experimental IR spectra of cyclopentadiene (0N), we can see that the IR spectrum of 0N predicted at the M06-2X/6-31G(d) level was a little bit blue shifted. It suggests that the IR spectrum of **EC-1** predicted at the M06-2X/6-31G(d) level (**Figure S8**) may also a little bit blue shifted.

The Cartesian coordinates of all involved compounds in the reaction process of EC-1 optimized at the M06-2X/6-31G(d) level

Frequency calculations ensure that reactants and products do not have any imaginary frequency and transition states (TSs) have only one imaginary frequency.

Reactant, i.e., 2N-III	+ TNE		
С	-0.96704300	-0.65953700	0.01561300
С	-0.96728400	0.65928900	-0.01563000
Ν	1.73479500	0.55303900	-0.45386900
Ν	1.73497300	-0.55246500	0.45390000
Ν	-0.93296600	-1.43416100	1.26346900
0	-1.19895900	-0.83002300	2.27779100
0	-0.64479900	-2.60141000	1.14722900
Ν	-0.96194000	1.53311200	1.17596700
0	0.08626100	1.67070800	1.75170700
0	-2.02877500	2.04972400	1.41166500
Ν	-0.93357600	1.43392200	-1.26348500
0	-1.19893300	0.82953900	-2.27783700
0	-0.64631400	2.60138800	-1.14725700
Ν	-0.96141900	-1.53342500	-1.17594700
0	0.08682400	-1.67084200	-1.75162200
0	-2.02813100	-2.05031200	-1.41161200
С	3.92818200	0.00059500	-0.00002400
Н	4.57714100	-0.56133800	-0.68271600
Н	4.57637000	0.56305800	0.68300300
С	2.94608000	-0.87015000	0.71432400
Н	3.17805900	-1.69070200	1.38400900
С	2.94581000	0.87097400	-0.71443400
Н	3.17749000	1.69160600	-1.38412800
TS			
C	0.67242500	0.14869700	0.29718000
C	-0.67605900	0.30376900	0.08288200
Ν	-0.72903700	-2.22570700	-0.84079700
Ν	0.60281800	-2.34425800	-0.73950600
Ν	1.66597900	1.23715800	0.01527700
0	1.65544000	2.11198300	0.84597500
0	2.38403100	1.14029900	-0.95009000
Ν	-1.17472300	1.49768100	-0.64139900
0	-0.36298400	2.13088000	-1.28746900
0	-2.35876500	1.71957200	-0.55036000
Ν	-1.72085600	-0.08167700	1.10779600
0	-1.63325700	0.57318500	2.12040100
0	-2.55484100	-0.89244000	0.81106800
Ν	1.15508100	-0.70341700	1.40027500

0	0.33533100	-1.42789800	1.91553700
0	2.33733800	-0.62249600	1.64826000
С	0.20332300	-0.68252000	-2.29909800
Н	0.23114100	-1.19786600	-3.27380900
Н	0.33858500	0.38364600	-2.47389400
С	1.18801800	-1.35903800	-1.41252800
Н	2.26844000	-1.30065500	-1.46999500
С	-1.02017100	-1.15468300	-1.58362100
Н	-2.05657700	-0.94561800	-1.82927300
Product, i.e., EC-1			
С	-0.78055100	-0.06189500	0.04756600
С	0.76538000	0.08829500	0.13088700
Ν	0.70288400	-1.99348900	1.38852200
Ν	-0.52999900	-2.08132300	1.33622900
Ν	-1.50096500	1.25533500	-0.20196100
0	-1.21699600	1.79378100	-1.24313600
0	-2.28378500	1.61752300	0.64186900
Ν	1.28525600	1.53904100	0.17338300
0	0.60366600	2.35545300	0.75260900
0	2.38788800	1.70497800	-0.28105500
Ν	1.53035800	-0.51413100	-1.03417400
0	1.23050000	-0.06946400	-2.11565800
0	2.38107300	-1.32145200	-0.75766700
Ν	-1.31731200	-0.98619100	-1.05289200
0	-0.61291100	-1.90111400	-1.39923900
0	-2.45802200	-0.76298100	-1.38101000
С	-0.11010700	-0.02157200	2.34710700
Н	-0.12321600	-0.46318200	3.34530800
Н	-0.20992600	1.06087300	2.40306900
С	-1.11847800	-0.69541400	1.41943200
Н	-2.18099100	-0.70125100	1.64645200
С	1.07197600	-0.53673700	1.51647800
Н	2.10196000	-0.40098300	1.83889500

The Cartesian coordinates of all involved compounds in the N_2 elimination process of EC-1 optimized at the M06-2X/6-31G(d) level

Frequency calculations ensure that reactants and products do not have any imaginary frequency and transition states (TSs) have only one imaginary frequency.

EC-1			
С	-0.78055100	-0.06189500	0.04756600
С	0.76538000	0.08829500	0.13088700
Ν	0.70288400	-1.99348900	1.38852200
Ν	-0.52999900	-2.08132300	1.33622900
Ν	-1.50096500	1.25533500	-0.20196100
0	-1.21699600	1.79378100	-1.24313600
0	-2.28378500	1.61752300	0.64186900
Ν	1.28525600	1.53904100	0.17338300
0	0.60366600	2.35545300	0.75260900
0	2.38788800	1.70497800	-0.28105500
Ν	1.53035800	-0.51413100	-1.03417400
0	1.23050000	-0.06946400	-2.11565800
0	2.38107300	-1.32145200	-0.75766700
Ν	-1.31731200	-0.98619100	-1.05289200
0	-0.61291100	-1.90111400	-1.39923900
0	-2.45802200	-0.76298100	-1.38101000
С	-0.11010700	-0.02157200	2.34710700
Н	-0.12321600	-0.46318200	3.34530800
Н	-0.20992600	1.06087300	2.40306900
С	-1.11847800	-0.69541400	1.41943200
Н	-2.18099100	-0.70125100	1.64645200
С	1.07197600	-0.53673700	1.51647800
Н	2.10196000	-0.40098300	1.83889500
TS			
С	-0.05138100	-0.78583400	0.20304700
С	-0.04364900	0.78521700	0.15059200
Ν	2.80555000	0.58327000	0.74124100
Ν	2.80707400	-0.53422200	0.75954100
Ν	-1.51385700	-1.31886400	0.42002000
0	-2.15529900	-0.72718100	1.26678300
0	-1.82311800	-2.32251400	-0.15935800
Ν	-1.48346900	1.35472900	-0.07777000
0	-1.86252200	2.19397900	0.69409200
0	-2.05447700	0.90218000	-1.03986500
Ν	0.71002600	1.43511100	-1.03506400
0	1.53924900	0.78140800	-1.61417200
0	0.43993300	2.60131400	-1.20146500
Ν	0.38719000	-1.50870400	-1.07042000

0	1.23025700	-2.36041000	-0.93141600
0	-0.19840100	-1.18960300	-2.07310700
С	0.65743000	0.04870000	2.27872200
Н	1.21929800	0.08503600	3.20974100
Н	-0.45103000	0.01088400	2.52789400
С	0.68425800	-1.14326800	1.45390900
Н	0.70312100	-2.16478700	1.80961500
С	0.58734900	1.21274400	1.42046300
Н	0.61199000	2.25087700	1.71759200

N₂ elimination product

С	0.53407800	-0.74511500	-0.22465400
С	0.00304000	0.70508800	-0.15773100
Ν	-4.04856900	0.04824200	-0.50015800
Ν	-4.33250100	-0.97725200	-0.22624500
Ν	1.93881900	-0.75095100	-0.86287700
0	2.02014600	-0.07098800	-1.86376400
0	2.78405200	-1.44330900	-0.36404000
Ν	1.07576800	1.77124400	-0.06360900
0	0.80984300	2.82835000	-0.58462900
0	2.07182400	1.48224700	0.55742200
Ν	-0.85636000	0.88920700	1.09504800
0	-1.66520900	0.00624600	1.28344200
0	-0.70752800	1.90171500	1.72662400
Ν	0.70282700	-1.43388900	1.11757500
0	0.56240400	-2.63358200	1.10552900
0	0.99392700	-0.73097500	2.05681400
С	-1.18450200	-0.55927200	-1.77849200
Н	-1.92616200	-0.81179900	-2.52811800
Н	-0.36292000	1.40234600	-2.16290900
С	-0.41453700	-1.44168600	-1.14855400
Н	-0.38345700	-2.51664600	-1.26545000
С	-0.91029400	0.86496800	-1.38342200
Н	-1.80973600	1.43837400	-1.14372500

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Suzerain, M. A. Robb, J. J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, *Gaussian 09, Revision A.02*, Wallingford, 2009.
- 2. P. Politzer, J. Martinez, J. S. Murray, M. C. Concha and A. Toro-Labbe, *Mol. Phys.*, 2009, 107, 2095-2101.
- 3. B. M. Rice, S. V. Pai and J. Hare, Combust. Flame, 1999, 118, 445-458.
- 4. P. Politzer and J. S. Murray, *Propellants Explos. Pyrotech.*, 2016, **41**, 414-425.
- 5. P. Politzer and J. S. Murray, J. Mol. Model., 2015, 21, 25.
- 6. P. Politzer and J. S. Murray, J. Mol. Model., 2015, 21, 262.
- 7. S. L. Mayo, B. D. Olafson and W. A. Goddard, J. Phys. Chem., 1990, 94, 8897-8909.
- 8. Materials Studio, Version 4.4, Accelry software Inc: San Diego, CA, 2008.
- 9. J. Yang, X. Gong, H. Mei, T. Li, J. Zhang and M. Gozin, J. Org. Chem., 2018, 83, 14698-14702.
- 10. P. Politzer and J. S. Murray, Cent. Eur. J. Energ. Mater., 2011, 8, 209-220.