An unprecedented non-classical poly-interhalogen anion made of $[I_2CI]^-$ and I_2 at the 2-(*p*-tolyl)selenopheno[2,3-*b*]pyridinim cation template[†]

M. Carla Aragoni, Enrico Podda, Massimiliano Arca, Anna Pintus, Vito Lippolis, Claudia Caltagirone, Ricardi H. Bartz, Eder J. Lenardão, Gelson Perin, Ricardo F. Schumacher, Simon J. Coles, James B. Orton

ELECTRONIC SUPPLEMENTARY INFORMATION

a 1		•
Compound		2
Formula	$C_{14}H_{16}CINO_2Se$	$C_{14}H_{12}CII_{2.33}NSe$
$\rho_{calc.}$ / g cm ⁻⁵	1.577	2.401
μ/mm^{-1}	5.176	6.697
Formula Weight	344.69	604.76
Colour	colourless	dark red
Shape	lath	(cut) block-shaped
Size/mm ³	0.09×0.04×0.01	$0.13 \times 0.06 \times 0.05$
T/K	100(2)	100(2)
Crystal System	triclinic	triclinic
Space Group	<i>P</i> -1	<i>P</i> -1
a /Å	7.3040(2)	11.76310(10)
b /Å	9.1476(2)	14.0582(2)
c /Å	11.7026(2)	16.4528(2)
α /°	70.419(2)	94.0460(10)
β /°	80.430(2)	95.4730(10)
γ /°	88.427(2)	111.1560(10)
V/Å ³	726.09(3)	2509.62(5)
Ζ	2	6
Ζ'	1	3
Wavelength/Å	1.54184	0.71073
Radiation type	CuKα	ΜοΚα
$\Theta_{min}/^{\circ}$	4.066	1.563
$\Theta_{max}/^{\circ}$	68.225	27.483
Measured Refl's.	13289	115623
Indep't Refl's	2632	11505
Refl's I $\geq 2 s(I)$	2466	10395
R _{int}	0.0296	0.0361
Parameters	189	556
Restraints	2	15
Largest Peak	0.626	1.010
Deepest Hole	-0.413	-1.237
GooF	1.074	1.108
wR_2 (all data)	0.0711	0.0641
wR_2	0.0700	0.0625
R_1 (all data)	0.0301	0.0322
R_1	0.0277	0.0272

 Table S1. Crystal data and structure refinement parameters for compounds 1 and 2.

2 1 Se1 Se1 2.7976(8) 2.783(9) 1.857(2) 1.909(2) I2A I2B C5 C7 I1 I1 N1 C1 1.342(3) I1 Cl1 2.6947(10) C5 N1 1.350(3) I3 I4A 2.826(3) C2 C1 I3 I4B 2.7097(15) 1.378(4)C2C3 I3 Cl2 1.382(4)2.7779(9) C3 C4 I5 2.830(6) 1.397(3) I6A C4 C5 I5 2.790(5)1.401(3) I6B C4 C6 I5 C13 1.435(3)2.7019(9) $I7^i$ C6 C7 I7 1.362(3) 2.7430(11) C7 C8 1.468(3) Se1 C5 1.866(3) C8 C9 C7 1.903(3) 1.389(3) Se1 C8 C13 N1 C1 1.348(4) 1.398(3) C9 C10 1.388(3)N1 C5 1.344(4)C10 C2 C11 1.398(3) C1 1.380(5)C3 C11 C12 1.383(4)C2 1.383(5)C11 C14 1.515(3) C3 C4 1.399(5) C12 C13 1.395(3) C4 C5 1.406(5) C4 C6 1.435(5)C6 C7 1.354(5)C7 C8 1.470(4)C8 C9 1.402(5)C8 C13 1.399(5) C9 C10 1.381(5)C10 C11 1.396(5) C11 C12 1.392(5) C11 C14 1.501(5) C13 C12 1.386(5) 1.859(3) Se2 C19 C21 Se2 1.903(3) N2 C15 1.340(4) C19 N2 1.348(4)C15 C16 1.382(5)C17 1.389(5) C16 C18 C17 1.397(5)C19 C18 1.405(5)C20 C18 1.436(5)C20 C21 1.357(5) C21 C22 1.465(5)C22 C23 1.399(5) C22 C27 1.397(5) C23 C24 1.388(5) C24 C25 1.393(5) C25 C26 1.396(5) C25 C28 1.503(5) C27 1.390(5) C26 C33 Se3 1.862(3) C35 Se3 1.906(3) C29 N3 1.350(4) N3 C33 1.343(4) C29 C30 1.376(5) C30 C31 1.386(5) C31 C32 1.402(5)C32 C33 1.398(5) C32 C34 1.435(5) C34 C35 1.361(5) C35 C36 1.464(4)C36 C37 1.402(5)C36 C41 1.403(4)C37 C38 1.384(5)C38 C39 1.395(5) C39 C40 1.395(5) C39 C42 1.503(4)C40 C41 1.386(5)

Table S2. Bond lengths in Å for compounds 1 and 2.

Simmetry code: i -x, -y, -z.

		1				2	
C5	Se1	C7	85.52(10)	Cl1	I1	I2A	178.77(4)
C1	N1	C5	121.2(2)	Cl1	I1	I2B	169.9(5)
N1	C1	C2	120.2(2)	I4B	I3	Cl2	173.0(2)
Cl	C2	C3	120.4(2)	Cl2	13	I4A	172.55(14)
C_2	C3	C4 C5	119.2(2)	C13	15	I6A IGD	1/5.23(18) 174.02(18)
C_3	C4 C4	C5 C6	118.2(2) 129.0(2)		15 Se1		174.92(18) 85.87(14)
C5	C4 C4	C6	129.0(2) 112 7(2)	C5	N1	C1	1215(3)
N1	C5	Se1	125.27(19)	N1	C1	C1 C2	120.2(3)
N1	C5	C4	120.7(2)	C1	C2	C3	120.0(3)
C4	C5	Se1	114.00(17)	C2	C3	C4	119.7(3)
C7	C6	C4	115.2(2)	C3	C4	C5	117.9(3)
C6	C7	Se1	112.55(17)	C3	C4	C6	129.3(3)
C6	C7	C8	128.0(2)	C5	C4	C6	112.8(3)
C8	C/	Sel C7	119.43(17)	NI N1	C5	Sel	126.1(2)
C9 C9		C13	120.3(2) 118 1(2)	NI C4	C5	C4 Sol	120.7(3) 113.2(2)
C3	C8	C13 C7	1216(2)	C7	C5 C6	C4	115.2(2) 115.6(3)
C10	C9	C8	121.0(2) 120.8(2)	C6	C7	Se1	112.5(2)
C9	C10	C11	120.0(2) 121.4(2)	C6	C7	C8	127.9(3)
C10	C11	C14	120.0(2)	C8	C7	Se1	119.6(2)
C12	C11	C10	117.7(2)	C9	C8	C7	120.7(3)
C12	C11	C14	122.4(2)	C13	C8	C7	121.6(3)
C11	C12	C13	121.4(2)	C13	C8	C9	117.7(3)
C12	C13	C8	120.6(2)	C10	C9	C8	120.9(3)
				C9	C10	CII C14	121.3(3)
				C10	C11	C14 C10	120.8(3) 117.0(3)
				C12	C11	C10 C14	121 3(3)
				C12	C12	C14	121.3(3) 121.1(3)
				C12	C13	C8	121.1(3)
				C19	Se2	C21	85.91(14)
				C15	N2	C19	121.7(3)
				N2	C15	C16	120.4(3)
				C15	C16	C17	119.7(3)
				C16	C17	C18 C10	119.6(3)
				C17	C18	C_{19}	118.3(3) 129.2(3)
				C17	C18	C20	112 5(3)
				N2	C19	Se2	126.2(2)
				N2	C19	C18	120.3(3)
				C18	C19	Se2	113.5(2)
				C21	C20	C18	115.7(3)
				C20	C21	Se2	112.3(2)
				C20	C21	C22	128.2(3)
				C22	C21	Se2	119.5(2) 120.0(3)
				C23	C22	C21 C21	120.0(3) 122 1(3)
				C27	C22	C23	118.0(3)
				C24	C23	C22	120.5(3)
				C23	C24	C25	121.7(3)
				C24	C25	C26	117.8(3)
				C24	C25	C28	120.2(3)
				C26	C25	C28	122.0(3)
				$C2/C2\epsilon$	C26	C25	120.9(3)
				C20	C27 Se3	C22	121.2(3) 85.82(14)
				C33	N3	C29	121.2(3)
				N3	C29	C30	120.3(3)
				C29	C30	C31	120.0(3)
				C30	C31	C32	119.4(3)
				C31	C32	C34	128.7(3)

Table S3. Bond angles in $^{\circ}$ for compounds 1 and 2.

1			2	
	C33	C32	C31	118.0(3)
	C33	C32	C34	113.2(3)
	N3	C33	Se3	125.6(2)
	N3	C33	C32	121.0(3)
	C32	C33	Se3	113.4(2)
	C35	C34	C32	115.1(3)
	C34	C35	Se3	112.4(2)
	C34	C35	C36	128.9(3)
	C36	C35	Se3	118.7(2)
	C37	C36	C35	121.5(3)
	C37	C36	C41	117.9(3)
	C41	C36	C35	120.6(3)
	C38	C37	C36	120.5(3)
	C37	C38	C39	121.6(3)
	C38	C39	C42	121.5(3)
	C40	C39	C38	118.0(3)
	C40	C39	C42	120.5(3)
	C41	C40	C39	120.9(3)
	C40	C41	C36	121.1(3)

Table S4. Hydrogen bonding interactions found in compounds 1 and 2. Distances and angles are reported in Å and $^{\circ}$, respectively.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccc} d_{\text{D-A}} & 3.022(2) & 3.054(3) & 3.066(3) & 3.076(3) \\ d_{\text{H-A}} & 2.011(19) & 2.389(8) & 2.254(8) & 2.258(8) \end{array} $	
$d_{\text{H-A}}$ 2.011(19) 2.389(8) 2.254(8) 2.258(8)	
$\alpha_{\text{D-H}\cdots\text{A}}$ 174(3) 153.97(18) 153.30(18) 154.62(18)	
O1–H1AA···Cl1	
<i>d</i> _{D-A} 3.209(2)	
$d_{\text{H-A}}$ 2.363(6)	
$\alpha_{D-H\cdots A}$ 172.9(2)	
O2–H2A····Cl1	
<i>d</i> _{D-A} 3.190(9)	
$d_{\text{H-A}}$ 2.212(6)	
$\alpha_{D-H\cdots A}$ 167.8(2)	
$C1-H1A\cdots Cl1^{i}$	
$d_{\text{D-A}}$ 3.484(2)	
$d_{\text{H-A}}$ 2.580(6)	
α _{D-H···A} 159.2(2)	

Symmetry code: $^{i} = -x, 2-y, 2-z.$

Table S5. Optimised geometry calculated for **L** at DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase (total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Atom number	Z	X	У	Z
1	34	0.869306	-1.385345	0.145371
2	7	3.663004	-0.850941	0.078662
3	6	4.669798	0.021267	-0.017247
4	1	5.673861	-0.400849	0.028745
5	6	4.490235	1.406459	-0.170239
6	1	5.359539	2.056891	-0.243659
7	6	3.201971	1.925826	-0.226237
8	1	3.031516	2.995261	-0.346266
9	6	2.117915	1.038020	-0.124141
10	6	2.438154	-0.337223	0.024502
11	6	0.710046	1.314668	-0.158575
12	1	0.322923	2.321901	-0.301177
13	6	-0.113014	0.227785	-0.042553
14	6	-1.580453	0.228112	-0.037063
15	6	-2.319687	-0.885074	-0.466973
16	1	-1.799100	-1.771678	-0.829062
17	6	-3.714315	-0.865777	-0.465043
18	1	-4.260255	-1.743966	-0.809413
19	6	-4.425186	0.261332	-0.036735
20	6	-3.685262	1.373037	0.397972
21	1	-4.209766	2.261699	0.750222
22	6	-2.294278	1.358792	0.404394
23	1	-1.750213	2.224528	0.777647
24	6	-5.929311	0.285965	-0.031129
25	1	-6.314642	1.104229	-0.653381
26	1	-6.318751	0.438930	0.983983
27	1	-6.344131	-0.653057	-0.413069

Table S6. Optimised geometry calculated for $[HL]^+$ at DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase (total charge = 1, spin multiplicity = 1) in orthogonal Cartesian coordinate format (Z = atomic number).

Atom number	Z	X	У	Z
1	34	-0.812267	-1.363570	-0.182248
2	7	-3.640158	-0.775411	-0.107542
3	1	-3.822192	-1.768939	-0.222691
4	6	-4.700031	0.057155	-0.013464
5	1	-5.682250	-0.401599	-0.070818
6	6	-4.491974	1.418163	0.146786
7	1	-5.351471	2.078332	0.222699
8	6	-3.188909	1.917323	0.207467
9	1	-3.020237	2.985488	0.334719
10	6	-2.093487	1.044788	0.103734
11	6	-2.363084	-0.339790	-0.057516
12	6	-0.696025	1.345144	0.150064
13	1	-0.331647	2.357763	0.302398
14	6	0.149024	0.273974	0.032208
15	6	1.606210	0.253437	0.025375
16	6	2.326787	-0.905980	0.359907
17	1	1.802010	-1.815417	0.657154
18	6	3.718478	-0.905510	0.358132
19	1	4.253941	-1.814341	0.628370
20	6	4.441884	0.247621	0.022704
21	6	3.717535	1.404991	-0.316065
22	1	4.255528	2.310891	-0.593265
23	6	2.329347	1.413850	-0.318711
24	1	1.801002	2.317527	-0.616032
25	6	5.942806	0.255810	0.018525
26	1	6.330233	0.996418	0.729833
27	1	6.328778	0.526740	-0.972376
28	1	6.351112	-0.722858	0.288582

Table S7. Selected optimised bond lengths (Å) and angles (°) calculated at the DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase for **L** and $[HL]^+$ and corresponding structural data; numbering scheme as in Figure S.

	L	$[\mathbf{HL}]^+$	$[HL]^+$
	(calculated)	(calculated)	(experimental) ^a
N1-C1	1.336	1.351	1.344
N1-C5	1.329	1.350	1.347
Se1-C5	1.891	1.862	1.859
Se1-C7	1.898	1.911	1.906
C1-C2	1.405	1.386	1.379
C2-C3	1.390	1.397	1.386
C3-C4	1.405	1.404	1.399
C4-C5	1.420	1.420	1.401
C4-C6	1.435	1.430	1.435
C6-C7	1.368	1.369	1.360
C7-C8	1.468	1.457	1.466
C8-C9	1.408	1.410	1.397
C8-C13	1.404	1.406	1.399
C9-C10	1.391	1.388	1.387
C10-C11	1.404	1.407	1.395
C11-C12	1.400	1.402	1.392
C11-C14	1.504	1.501	1.507
C12-C13	1.395	1.392	1.390
N1-H1		1.017	
C1-N1-C5	116.06	122.72	121.37
N1-C5-Se1	123.21	127.42	125.69
C5-Se1-C7	87.25	86.58	85.75
Se1-C7-C8-C13	28.02	23.94	2.66
C1-N1-C5-Se1	179.82	179.65	179.51

^aAverage calculated on the three independent $[HL]^+$ cations in the asymmetric unit of 2.

Table S8. Optimised geometry calculated for $\{[HL]^+ \cdots [Cl-I-I]^-\}$ (I) at DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase (total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (*Z* = atomic number).

Atom number	Ζ	X	У	Z
1	34	-1.587353	0.744517	0.901816
2	7	0.254055	2.768554	0.073610
3	1	0.745077	2.521551	1.007615
4	6	0.723225	3.695462	-0.769667
5	1	1.632969	4.204235	-0.464805
6	6	0.057947	3.959046	-1.963859
7	1	0.454759	4.712236	-2.638849
8	6	-1.101740	3.249124	-2.276911
9	1	-1.627447	3.443492	-3.210599
10	6	-1.588801	2.278418	-1.387568
11	6	-0.854751	2.065985	-0.193347
12	6	-2.734639	1.425587	-1.499470
13	1	-3.382192	1.438132	-2.372998
14	6	-2.920282	0.563883	-0.451902
15	6	-3.999911	-0.413771	-0.291622
16	6	-5.262148	-0.185690	-0.872381
17	1	-5.446379	0.740200	-1.414329
18	6	-6.286585	-1.115280	-0.732741
19	1	-7.256428	-0.911188	-1.186606
20	6	-6.099649	-2.303593	-0.006852
21	6	-4.845459	-2.524040	0.575278
22	1	-4.670022	-3.438498	1.140844
23	6	-3.812065	-1.598633	0.437999
24	1	-2.840600	-1.817789	0.881475
25	6	-7.217570	-3.298063	0.140714
26	1	-6.903297	-4.167076	0.728021
27	1	-7.558958	-3.655680	-0.839329
28	1	-8.083424	-2.845473	0.641254
29	53	2.667652	-0.180075	0.935505
30	53	4.015559	-1.881346	-0.780448
31	17	1.162160	1.673880	2.599301

Table S9. Selected optimised bond lengths (Å) and angles (°) calculated at the DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase for $\{[HL]^+ \cdots [Cl-I-I]^-\}$ (I) and $\{[HL]^+ \cdots [I-I-Cl]^-\}$ (II) with corresponding structural data and for $\{[HL]^+ \cdots [I-I-Cl]^-\}$ (II); numbering scheme as in Figure S.

	$\{[HL]^+ \cdots [Cl-I-I]^-\}$	$\{[HL]^+ \cdots [Cl-I-I]^-\}$	${[HL]^+ \cdots [I - I - C1]^-}$
	(calculated)	(experimental) ^a	(calculated)
N1-C1	1.338	1.346	1.340
N1-C5	1.340	1.345	1.341
Se1-C5	1.866	1.862	1.866
Se1-C7	1.908	1.904	1.910
N1-H1	1.084	/	1.056
H1-Cl1	1.851	/	/
H1-I1	/	/	2.331
N1-Cl1	2.899	3.066	/
N1-I1	/	/	3.352
Cl1-I1	2.911	2.725	/
I1-I2	2.767	2.820	3.047
I2-Cl1	/	/	2.501
C1-N1-C5	121.87	121.46	122.39
N1-C5-Se1	125.41	125.94	126.08
C5-Se1-C7	85.69	85.87	85.74
N1-H1-Cl1	161.37	/	/
N1-H1-I1	/	/	162.10
H1-Cl1-I1	85.22	/	/
H1-I1-I2	/	/	71.59
Cl1-I1-I2	176.49	175.52	/
I1-I2-Cl1	/	/	175.85
C1-N1-H1-Cl1	172.99	/	163.59
Se1-C7-C8-C13	29.54	2.66	29.75
C1-N1-C5-Se1	179.48	179.51	178.91

a

^aAverage calculated for the three independent $[I_2Cl]^-$ systems in the unit cell of **2**.

Table S10. Optimised geometry calculated for ${[HL]^+ \cdots [I-I-Cl]^-}$ (**II**) at DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase (total charge = 0, spin multiplicity = 1) in orthogonal Cartesian coordinate format (*Z* = atomic number).

Atom number	Z	X	у	Z
1	34	1.118284	0.029890	-0.810164
2	7	-1.046281	1.911960	-0.835683
3	1	-1.594679	1.142191	-1.306227
4	6	-1.621915	3.090898	-0.562454
5	1	-2.660932	3.195998	-0.859458
6	6	-0.895977	4.087663	0.079348
7	1	-1.377100	5.036039	0.300942
8	6	0.431543	3.849392	0.437461
9	1	1.007101	4.620074	0.947859
10	6	1.024680	2.611038	0.147672
11	6	0.225234	1.639653	-0.506482
12	6	2.348364	2.145207	0.436377
13	1	3.072801	2.757170	0.968412
14	6	2.611238	0.861562	0.042862
15	6	3.865604	0.122233	0.199853
16	6	5.096972	0.804750	0.224088
17	1	5.117350	1.884731	0.089423
18	6	6.290117	0.109642	0.384909
19	1	7.230516	0.660716	0.393582
20	6	6.307144	-1.288630	0.522376
21	6	5.081226	-1.964512	0.490978
22	1	5.063400	-3.048308	0.599695
23	6	3.879992	-1.275486	0.332828
24	1	2.942939	-1.832585	0.343348
25	6	7.605024	-2.027954	0.692415
26	1	7.440986	-3.106845	0.780995
27	1	8.135469	-1.689970	1.592046
28	1	8.271534	-1.854607	-0.162372
29	53	-2.866416	-0.811451	0.913247
30	17	-3.274887	-0.542384	3.366187
31	53	-2.250134	-0.951181	-2.095464

Table S11. Optimised geometry calculated for $[Cl-I-I]^- \cdots I_2 \cdots [I-I-Cl]^-$ (**III**) at DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase (total charge = -2, spin multiplicity = 1) in orthogonal Cartesian coordinate format (*Z* = atomic number).

Atom number	Z	x	У	Z
1	53	1.378255	-0.025286	-0.005620
2	53	-1.374624	0.026560	0.005733
3	53	-6.913309	-0.888460	-0.020770
4	53	6.912219	0.888104	0.020720
5	17	-4.594800	0.384503	0.032085
6	17	4.595506	-0.388706	-0.032266
7	53	-9.520214	-2.229847	-0.076627
8	53	9.516921	2.233173	0.076753

Table S12. Selected optimised bond lengths (Å) and angles (°) calculated at the DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase for $\{[CI-I-I]^-...I_2...[I-I-CI]^-\}$ (**III**) and $\{[I-I-CI]^-...I_2...[CI-I-I]^-\}$ (**IV**) with corresponding structural data for $\{[CI-I-I]^-...I_2...[I-I-CI]^-\}$ (**III**); numbering scheme as in Figure S9.

	$\{[Cl-I-I]^{-}\cdots I_{2}\cdots [I-I-Cl]^{-}\}$	$\{[CI-I-I]^{-}\cdots I_{2}\cdots [I-I-CI]^{-}\}$	${[I-I-C1]^- \cdots I_2 \cdots [C1-I-I]^-}$
	(calculated)	(experimental)	(calculated)
Cl1-I1	2.637	2.702	/
I1-I2	2.940	2.830	2.932
I2-Cl1	/	/	2.645
I2-I3	3.545	3.286	/
Cl1-I3	/	/	3.240
I3-I4	2.788	2.743	2.753
I4-I5	3.536	3.286	/
I5-I6	2.941	2.830	2.932
I6-Cl2	2.635	2.702	/
I4-Cl2	/	/	3.238
Cl2-I5	/	/	2.646
Cl1-I1-I2	178.29	175.24	/
I1-I2-Cl1	/	/	178.46
I1-I2-I3	130.23	99.94	
I2-Cl1-I3	/	/	144.85
I2-I3-I4	172.42	172.59	/
Cl1-I3-I4	/	/	174.73
I3-I4-I5	172.58	172.59	/
I3-I4-Cl2			174.63
I4-I5-I6	129.37	99.94	/
I4-Cl2-I5	/	/	144.66
I5-I6-Cl2	178.32	175.24	/
Cl2-I4-I5	/	/	178.45

Table S13. Optimised geometry calculated for $\{[I-I-Cl]^- \cdots I_2 \cdots [Cl-I-I]^-\}$ (**IV**) at DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase (total charge = -2, spin multiplicity = 1) in orthogonal Cartesian coordinate format (*Z* = atomic number).

Atom number	Z	X	У	Z
1	53	5.789309	10.120304	15.779151
2	53	4.448717	12.350462	16.779267
3	53	0.964511	16.022658	19.788451
4	53	2.990155	15.435764	17.739670
5	17	-0.847931	16.624970	21.606602
6	53	9.276868	6.511384	12.752001
7	53	7.250001	7.047771	14.814816
8	17	11.089571	5.955987	10.922043

Figure S1. a) View along the [101] direction of the hydrogen-bonded dimeric arrangement found in **1**. Relevant bond lengths and angles are listed in Table S4. b) Packing diagram of **1** viewed along the *b* axis. Symmetry code: $^{i} = -x$, 2-y, 2-z.

Figure S2. Partial view along the [011] direction of a cationic π - π stacked layer found in compound **1** with relevant interactions are described below.

Planes: **1a** = N1-C1-C2-C3-C4-C5; **1b** = C8-C9-C10-C11-C12-C13; **2a** = N2-C16-C17-C18-C19-C15; **2b** = C22-C23-C24-C25-C26-C27; **3a** = N3-C29-C30-C31-C32-C33; **3b** = C36-C37-C38-C39-C40-C41.

Figure S3. Partial view along the [111] direction of a cationic layer found in compound 2 with intermolecular π - π interactions.

Figure S4. Raman spectrum of compound 2.

Figure S5. Molecular structure and atom labelling scheme calculated at the DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase for L (top) and $[HL]^+$ (bottom).

Figure S6. Relative energy variation ΔE of the total electronic energy as a function of torsion angle τ (Se1-C7-C8-C13; atom labelling scheme as in Figure S5) calculated for **L** (blue line) and [HL]⁺ (orange line) at the DFT level (mPW1PW//LANL2DZ(d,p)).

Figure S7. Isosurfaces of selected frontier KS-MOs calculated for **L** (left) and $[HL]^+$ (right) at the DFT level (mPW1PW// LANL2DZ(d,p)) in the gas phase; isovalue 0.05 |e|.

Figure S8. Molecular structure and atom labelling scheme calculated at the DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase for $\{[LH]^+ \cdots [Cl-I-I]^-\}$ (I, top) and $\{[LH]^+ \cdots [I-I-Cl]^-\}$ (II, bottom).

Figure S9. Molecular structure and atom labelling scheme calculated at the DFT level (mPW1PW//LANL2DZ(d,p)) in the gas phase for $\{[CI-I-I]^- \cdots I_2 \cdots [I-I-CI]^-\}$ (III, top) and $\{[I-I-CI]^- \cdots I_2 \cdots [CI-I-I]^-\}$ (IV, bottom).