Supplementary Information

Composites based on nitroprusside cyano-bridged coordination polymers particles and chitosan for NO delivery

Melvyn Gorra,^a Frantz Ndebulia Watchou,^a Maria A. Palacios,^b Jérôme Long,^a Saad Sene,^a Gautier Félix,^a Nathalie Tanchoux,^a Françoise Quignard,^a Joulia Larionova^a and Yannick Guari^a*

Modelling

Production of NO_(g)

The NO is generated by a light irradiation of coordination polymer based on nitroprusside material. The light irradiation produces the following chemical reaction:

$$\left[Fe^{II}(CN)_5 NO\right]^2 \xrightarrow{h\nu} \left[Fe^{III}(CN)_5\right]^2 \xrightarrow{} + NO_{(g)}$$
(1)

Its kinetic is characterised by the reaction rate constant k_{NO} (s⁻¹) and the $[Fe^{II}(CN)_5NO]$ concentration:

$$\frac{\partial [Fe^{II}(CN)_5 NO]}{\partial t} = -k_{NO} \cdot [Fe^{II}(CN)_5 NO]$$
⁽²⁾

The result of this equation is:

$$[Fe^{II}(CN)_5 NO] = C_{TOT - NO} \cdot e^{-k_{NO} \cdot t}$$
⁽³⁾

with C_{TOT-NO} which is the maximal concentration of NO that the starting material can produce (mol.m⁻³).

The $[NO_{(g)}]$ concentration can be written as a function of $[Fe^{II}(CN)_5NO]$ and C_{TOT-NO} :

$$[NO_{(g)}] = C_{TOT - NO} - [Fe^{II}(CN)_5 NO]$$
(4)

and

$$[NO_{(g)}] = C_{TOT - NO} \left(1 - e^{-k_{NO} \cdot t} \right)$$
(5)

Diffusion model

In this model we consider that the concentration of $NO_{(g)}$ represented by ^C (mol.m⁻³) follows the diffusion equation:

$$\frac{\partial c}{\partial t} + D \cdot \Delta c = f \tag{6}$$

with f which is a volume source term (mol.(m⁻³.s⁻¹)) corresponding to the quantity of NO produced by the irradiation of the starting material as a function of the time, and D (m².s⁻¹) the diffusion coefficient of NO in the volume:

$$f = \frac{\partial [NO_{(g)}]}{\partial t} = C_{TOT - NO} \cdot k_{NO} \cdot e^{-k_{NO} \cdot t}$$
(7)

In order to take into account the evacuation of the NO(g) outside the material after release, we consider that the NO_(g) molecules on the surface will be directly desorbed:

$$D \cdot \vec{n} \cdot \vec{\nabla}c = -q_{out} \cdot c \tag{8}$$

with $q_{out} \gg 1 \,\mu$ m.days⁻¹ (in our case).

Then c_{lib} (mol.m⁻²) the quantity per unit of surface of [NO(g)] liberated on a point P at a position (x, y) on a surface is counted using the following equation:

$$\frac{\partial c_{lib}(t,x,y)}{\partial t} = q_{out} \cdot c(t,x,y)$$
(9)

The total quantity of liberated NO_(g) ($C_{lib,TOT}$) is:

$$c_{lib,TOT}(t) = \iint_{S} c_{lib}(t,x,y) dS$$
⁽¹⁰⁾

Now if we make the assumption that the volume concentration c and C_{TOT-NO} are homogeneous in the x and y directions, and that lengths in x and $y \gg$ length in z, then we can deduce from equation (6) an equation of surface concentration as a function of z:

$$\frac{\partial c}{\partial t} + D \cdot \frac{\partial^2 c}{\partial z^2} = \frac{C_{TOT - NO} \cdot k_{NO} \cdot e^{-k_{NO} \cdot t}}{L}$$
(11)

and:

$$\frac{\partial c_{lib}}{\partial t} = q_{out} \cdot c \tag{12}$$

With now c (in mol.m⁻¹), C_{TOT-NO} (in mol) and where L is the thickness of PBA material in the z direction we obtain the total quantity of liberated NO_(g) $^{c}_{lib}$ in mol (or in mol.g⁻¹) if we normalize with the mass of the sample).

Surface effect

The SEM-EDX measurements show that the density of $Ag_2[Fe(CN)_5(NO)]$ particles is higher on the surface of the film in comparison with the Fe^{2+} analogue, indicating a higher amount of $NO_{(g)}$ which can be liberated by the surface. To take into account this phenomenon, the surface conditions are modified as follows:

$$D \cdot \vec{n} \cdot \vec{\nabla}c = C_{S-NO} \cdot k_{NO} \cdot e^{-k_{NO} \cdot t} - q_{out} \cdot c$$
(13)

with C_{S-NO} a surface source term in mol for equation (6) or in mol.g⁻¹ (if we normalize with the mass of the sample).

Equation (11) becomes:

$$\frac{\partial c}{\partial t} + D \cdot \frac{\partial^2 c}{\partial z^2} = \frac{\left(C_{TOT - NO} - C_{S - NO}\right) \cdot k_{NO} \cdot e^{-k_{NO} \cdot t}}{L}$$
(14)

Diffusion flux

The diffusion flux J in (mol.m⁻².s⁻¹) represents the quantity of molecules which passes through a surface unit in a time unit. It is defined as follows:

$$\vec{J} = -D \cdot \vec{\nabla}c \tag{13}$$

Tables

Table S1. IR characteristic bands' assignment

Pristine chitosane	1@chit	1	2@chit	2	Assignements
-	3838	3844	3844	3854	Overtone v (NO)
3323	3431	3659	3410	3443	v (OH)
3291	-	3387	-	-	v (OH)
2917	2917	-	2920	-	v _s (CH)
2863	2888	-	2873	-	v _{as} (CH)
-	2182, 2145 (sh)	2182	2177 (sh), 2141	2177, 2163	v (CN)
-	2145	2147	2141	2163	v (CN)
-	1941	1941	1924	1937	v (NO)
1651	1654		1644	-	v (CO)
-	-	1616	-	1625	δ (ΟΗ)
1558	1525	-	1543	-	δ (NH)
1420	-	-	1422	-	v (CH-OH)
1375	1378	-	1367	-	v (CH ₂ -OH)
1065	1080	-	1053	-	v (C-O-C)

-	664	666	659	662	δ (Fe-NO)
-	522	520	507	516	v (Fe-CN)
-	431	443	414	418	δ (Fe-CN)

Figures Normalized Intensity (a. u.) V_{OH} V_{NH} ν δ_{он} V_{coc} $\boldsymbol{\delta}_{\text{Fe-NO}}$ V_{CH} V_{H2COH} 4000 3000 2500 2000 500 1500 1000 3500 Wavenumber (cm⁻¹) Normalized Intensity (a. u.) V_{CN (2@chit)} ν_{cn (PBA)} V_{NO} 2200 2100 2000 1900 2300 1800 Wavenumber (cm⁻¹)

Figure S2. TGA curves of chitosan film (black), 1 (red) and 1@chit (blue).

Figure S3. TGA curves of chitosan film (black), 2 (red) and 2@chit (blue).

Figure S4. SEM images of the composites (top) 1@chit : (a) surface and (b) its transversal cut; (bottom) 2@chit : (c) surface, (d) transversal cut.

Figure S5. IR spectra f 1 before (brown) and after (orange) NO release; (up) spectral window 4000 - 400 cm⁻¹, (down) spectral window 2300 - 1800 cm⁻¹

Figure S6. UV-Vis spectra of the nanocomposite 1@chit before (black) and after (red) irradiation.