Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

# **Supporting Information**

## Cellulose Nanocrystal Reinforced Hydrogel with Anti-Freezing

### **Properties for Strain Sensor**

Jiawen Zheng <sup>a</sup>, Yong Sun<sup>a,b,\*</sup>, Shuliang Yang <sup>a</sup>, Zheng Li <sup>a</sup>, Xing Tang <sup>a,b</sup>, Xianhai Zeng <sup>a,b</sup>, Lu Lin <sub>a,b</sub>

<sup>a</sup> Xiamen Key Laboratory of Clean and High-valued Applications of Biomass, College of Energy,

Xiamen University, Xiamen 361102, China.

<sup>b</sup> Fujian Engineering and Research Center of Clean and High-valued Technologies for Biomass, Xiamen University, Xiamen 361102, China.

\* Corresponding author.

Yong Sun

Email: sunyong@xmu.edu.cn

Tel.: 00-86-592-5952786; Fax: 00-86-592-5952786

| Samples       | AA  | PVA | ${\rm H_2O}$ | Ethylene glycol | $\mathrm{Fe}^{3+}$ | CNCs | APS  | MBAA |
|---------------|-----|-----|--------------|-----------------|--------------------|------|------|------|
|               | (g) | (g) | (g)          | (g)             | (mmol)             | (mg) | (mg) | (mg) |
| PVA/PAA       | 6   | 2   | 10           | 10              | /                  | /    | 50   | 20   |
| PVA/PAA/CNC-5 | 6   | 2   | 10           | 10              | /                  | 5    | 50   | 20   |

/

/

/

/

0.3

0.6

0.9

1.8

0.6

/

/

/

/

PVA/PAA/CNC-10

PVA/PAA/CNC-15

PVA/PAA/CNC-20

PVA/PAA/CNC-30

PVA/PAA//Fe-50

PVA/PAA//Fe-100

PVA/PAA//Fe-150

PVA/PAA//Fe-300

PVA/PAA/CNC/Fe-100

Table S1. Feed information of AA solution and PVA solution for IPN hydrogel formation

| Hydrogel materials  | Elongation | Tensile        | Toughness ( | Elastic modulus | Ionic conductivity | Ref.      |
|---------------------|------------|----------------|-------------|-----------------|--------------------|-----------|
|                     | (%)        | Strength (kPa) | KJ/m³)      | (KPa)           | (S/m)              |           |
| PVA/PAA/CNC/Fe      | 756        | 519            | 179.342     | 0.69            | 1.54               | This work |
| GO/PEDOT:PSS/PNIPAM | 2512       | 29             | N/G         | N/G             | 0.084              | [1]       |
| PNIPAAm/PANI        | 290        | 42             | N/G         | N/G             | 0.068              | [2]       |
| MXene/PVA/PAAm      | 1000       | 35             | N/G         | N/G             | N/G                | [3]       |
| PAAm/PEDOT:PSS      | 525        | 30             | N/G         | 80              | 1.000              | [4]       |
| PAA/TA@CNC/Al       | 2952       | 256            | 5600        | 48              | N/G                | [5]       |
| PEG/PAM/PAA/Fe      | 1350       | 360            | 458         | N/G             | 0.006              | [6]       |
| PAA/PANI/Fe         | 991        | 35.68          | N/G         | N/G             | N/G                | [7]       |
| PAM/PVAA/Fe         | 600        | 370            | N/G         | N/G             | N/G                | [8]       |
| PAA/CNF/Fe          | 1803       | 1370           | 11.05       | N/G             | N/G                | [9]       |
| PRGO/PB/TA@CNC      | 869        | 245            | N/G         | N/G             | 0.0175             | [10]      |

### **Table S2.** Mechanical properties of various similar hydrogels

Note: 'N/G' indicates 'not given' in the references.



**Fig. S1.** Preparation of the PVA/PAA/CNC/Fe<sup>3+</sup> hydrogel.



**Fig. S2.** CNCs–Fe<sup>3+</sup> binding unit.



Fig. S3. SEM image of the PVA/PAA/CNC/Fe<sup>3+</sup> hydrogel



Fig. S4. FTIR spectra of the PAA, PVA, CNCs, PVA/PAA, PVA/PAA/CNC and PVA/PAA/CNC/Fe<sup>3+</sup> hydrogel



**Fig. S5.** X-ray diffraction profiles of the PVA, PVA/PAA/CNC, and PVA/PAA/CNC/Fe<sup>3+</sup> hydrogels.



**Fig. S6.** The PVA/PAA/CNC/Fe<sup>3+</sup> hydrogel was subjected to 1200 cycles of the tensile test at low temperature.



**Fig. S7.** Tensile tests of IPN hydrogels: (a) Typical stress-train curves of different hydrogels; Toughness (b), Strain (c), and Tensile strength (d) of different hydrogels.

When only Fe<sup>3+</sup> was added, the tensile length of PVA/PAA/Fe increased significantly from 256% to 656%, which was higher than 512% of PVA/PAA/CNC, but the tensile strength and toughness were only 378 KPa and 119 KJ/m<sup>3</sup>, which was lower than 497 KPa and 129 KJ/m<sup>3</sup> of PVA/PAA/CNC, these changes demonstrated that hydrogen bonds and ionic coordinate bonds could improve the mechanical properties of hydrogels together.



Fig. S8. Highly stretched after 24 h of freezing.



Fig. S9. The PVA/PAA/CNC/Fe<sup>3+</sup> hydrogel could be electrically conductive at -20 °C.



Fig. S10. PVA/PAA, PVA/PAA/CNC, and PVA/PAA/CNC/Fe hydrogels can be bent after being

frozen at -20  $^\circ\!\mathrm{C}$  for 24 hours.



**Fig. S11.** Tensile tests of PVA/PAA, PVA/PAA/CNC, and PVA/PAA/CNC/Fe hydrogels at room temperature and after freezing: (a) Typical stress-train curves of different hydrogels; Strain (b), Tensile strength (c) of different hydrogels.

The tensile strain and tensile strength of different hydrogels decreased to different degrees after 24 hours of freezing at -20°C. The tensile length of PVA/PAA/CNC/Fe<sup>3+</sup>, PVA/PAA/CNC, and PVA/PAA hydrogels decreased to 69.5%, 67.9%, and 69.5% of that at room temperature, respectively. It can be seen that the addition of CNC and Fe<sup>3+</sup> had little effect on the tensile length at low temperatures. At the same time, the tensile strength decreased to 84.2%, 77.0%, and 85.2% of that at room temperature. When only CNC was added, the tensile strength of hydrogel decreased more at low temperature.

#### Reference

[1] H. Zhang, M. Yue, T. Wang, J. Wang, X. Wu, S. Yang, New Journal of Chemistry, 2021, 45, 4647-4657.

- [2] Z. Wang, H. Zhou, W. Chen, Q. Li, B. Yan, X. Jin, A. Ma, H. Liu, W. Zhao, ACS Appl. Mater. Interfaces, 2018, 10, 14045-14054.
- [3] H. Liao, X. Guo, P. Wan and G. Yu, Advanced Functional Materials, 2019, 29.
- [4] Y. Y. Lee, H. Y. Kang, S. H. Gwon, G. M. Choi, S. M. Lim, J. Y. Sun and Y. C. Joo, Adv. Mater., 2016, 28, 1636-1643.
- [5] C. Shao, M. Wang, L. Meng, H. Chang, B. Wang, F. Xu, J. Yang and P. Wan, Chemistry of Materials, 2018, 30, 3110-3121.
- [6] S. Liu, O. Oderinde, I. Hussain, F. Yao and G. Fu, Polymer, 2018, 144, 111-120.
- [7] G. Ge, Y. Lu, X. Qu, W. Zhao, Y. Ren, W. Wang, Q. Wang, W. Huang and X. Dong, ACS Nano, 2020, 14, 218-228.
- [8] J. Tie, L. Rong, H. Liu, B. Wang, Z. Mao, L. Zhang, Y. Zhong, X. Feng, X. Sui and H. Xu, Polymer Chemistry, 2020, 11,

1327-1336.

- [9] C. Shao, H. Chang, M. Wang, F. Xu and J. Yang, ACS Appl. Mater. Interfaces, 2017, 9, 28305-28318.
- [10] X. Liu, Y. Ma, X. Zhang and J. Huang, Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2021, 613.