Syntheses and Characterization of Two New Layered Ternary Chalcogenides $NaScQ_2$ (Q = Se and Te)

Gopabandhu Panigrahi,^a Sweta Yadav,^a Subhendu Jana,^a Arghya Ghosh,^b Manish K. Niranjan,^b and Jai Prakash^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India ^bDepartment of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India

Electronic Supplementary Information (ESI)

Fig. SI1 An (a) optical microscopic image and (b) SEM image of a few crystals of the NaScSe₂.

Fig. SI2 The fluorescence spectroscopic datasets of the polycrystalline $NaScSe_2$ at different excitation wavelengths.

Fig. SI3 The thermoelectric figure of merit (zT) of the polycrystalline NaScTe₂ sample.

Fig. SI4 The band structure along high symmetry direction in the Brillouin zone for the NaScSe₂ structure computed using **a**) GGA **b**) SCAN and **c**) mBJ XC functionals. The high symmetry *k*-points are $\Gamma \equiv (0, 0, 0), Z \equiv \left(0, 0, \frac{1}{2}\right), A \equiv \left(0, \frac{1}{2'2}\right), Y \equiv \left(0, \frac{1}{2'0}\right), L \equiv \left(\frac{1}{2'2'2}\right)$.

Fig. SI5 (a) The total and projected density of states (DOS) and **(b)** the band structure along high symmetry direction in the Brillouin zone for the NaScTe₂ structure. The dotted line in (a) indicates the valence band maximum. The high symmetry *k*-points are $\Gamma \equiv (0, 0, 0)$, $Z \equiv \left(0, 0, \frac{1}{2}\right)$, $A \equiv \left(0, \frac{1}{2'2}\right)$, $Y \equiv \left(0, \frac{1}{2'0}\right)$, $L \equiv \left(\frac{1}{2'2'2}\right)$.

Fig. SI6 The 3D iso-surfaces of the electron localization function (ELF) for the NaScSe₂ with ELF = 0.75. The yellow cloud indicates the density of transferred charge.

Fig. SI7 (a) The real (ε) and imaginary (ε) parts of frequency-dependent dielectric function for the NaScSe₂. (b) The absorption coefficient (α) values as a function of photon energy.

Fig. SI8 (a) The values of the $(\alpha E)^{1/2}$, **(b)** (αE) , and **(c)** $(\alpha E)^2$ as a function of energy for the NaScTe₂. The symbols α and *E* represent absorption and energy, respectively.

Fig. SI9 (a) The Seebeck coefficient $(\mu V/K)$ and (b) the zT values as a function of hole concentration for the NaScTe₂ structure.

S1: Optical Properties

The optical parameters are computed from the complex dielectric function $\varepsilon(\omega) = \varepsilon'(\omega) + \varepsilon''(\omega)$ which is in turn is computed from the single-particle energy bands. The imaginary part of the dielectric function $\varepsilon''(\omega)$ is obtained from the expression [7]:

$$\varepsilon_{ij}^{"}(\omega) = \frac{4 \pi^2 e^2}{V_c} \lim_{q \to 0} \sum_{c,v,\vec{k}} 2w_{\vec{k}} \delta(\varepsilon_{c\vec{k}} - \varepsilon_{v\vec{k}} - \omega) \times \langle u_{c\vec{k}+\hat{e}_iq} \left| u_{v\vec{k}} \rangle \langle u_{c\vec{k}+\hat{e}_jq} \left| u_{v\vec{k}} \rangle^* \right.$$
(S1-1)

where V_c is the volume of the unit cell; indices v and c indicate the valence band (VB) and the conduction band (CB) states, respectively; ${}^{u_{c\vec{k}}}$ is the cell periodic part of the orbitals at the wave vector \vec{k} ; ${}^{\varepsilon}_{c\vec{k}}$ and ${}^{\varepsilon}_{v\vec{k}}$ are CB and VB single-electron energy at \vec{k} ; ${}^{w}_{\vec{k}}$ is the weight of the k-points;

 \hat{e}_i and \hat{e}_j are the unit vectors for the three Cartesian directions. The real part of the dielectric function $\varepsilon'(\omega)$ is obtained using the Kramers-Kronig transformation as:

$$\varepsilon_{ij}^{'}(\omega) = 1 + \frac{2}{\pi} P \int_{0}^{\infty} \frac{\varepsilon_{ij}^{''}(\omega')\omega'}{\omega'^{2} - \omega^{2} + i\eta} d\omega'$$
(S1-2)

where η is a small complex shift and P is the principal value. The absorption coefficient $\alpha(\omega)$ is given in terms of $\varepsilon'(\omega)$ and $\varepsilon''(\omega)$ as:

$$\alpha(\omega) = \frac{\sqrt{2}\omega}{c} \left[\sqrt{\varepsilon'(\omega)^2 + \varepsilon''(\omega)^2} - \varepsilon'(\omega) \right]^{1/2}$$
(S1-3)

S2: Thermoelectric properties

The first-principles thermoelectric parameters are obtained from the electronic band structure and semi-classical Boltzmann transport theory within the rigid band approach [8]. The carrier concentration (*p*- or *n*-type) in the system is introduced by shifting the chemical potential. The electrical conductivity (σ_{ij}) as a function of temperature (*T*) and chemical potential (μ) is calculated as:

$$\sigma_{ij}(T;\mu) = \frac{1}{V} \int \sigma_{ij}(\epsilon) \left[-\frac{\partial f_{\mu}(T;\mu)}{\partial \epsilon} \right] d\epsilon$$
(S2-1)

where V is the volume, ϵ is the energy, $f_{\mu}(T;\mu)$ is the Fermi function. σ_{ij} as function of energy (ϵ) can be expressed as:

$$\sigma_{ij}(\epsilon) = \frac{1}{N} \sum_{n,\vec{k}} \sigma_{ij}(n,\vec{k}) \,\delta(\epsilon - \epsilon_{n,\vec{k}})$$
(S2-2)

where $\epsilon_{n,\vec{k}}$ are the band energies and N is the number of \vec{k} points in the Brillouin zone. $\sigma_{ij}(n,\vec{k})$ is given in terms of relaxation time $\tau_{n,\vec{k}}$ and group velocity $\vec{v}(n,\vec{k})$ as:

$$\sigma_{ij}(n,\vec{k}) = e^2 \tau_{n,\vec{k}} v_i(n,\vec{k}) v_j(n,\vec{k})$$
(S2-3)

The Seebeck coefficient tensor (S_{ij}) as a function of temperature (T) and chemical potential (μ) is given as :

$$S_{ij}(T;\mu) = \frac{1}{eTV\sigma_{ij}(T;\mu)} \int \sigma_{ij}(\epsilon)(\epsilon-\mu) \left[-\frac{\partial f_{\mu}(T;\mu)}{\partial \epsilon} \right] d\epsilon$$
(S2-4)

The total thermal conductivity (k) is given as $k = k_e + k_l$ where k_e is the electronic component and k_l is the lattice (phonon) component of k. The electronic part of thermal conductivity (k_e) is related to electrical conductivity (σ) as $k_e = L_0 \sigma T$ (Wiedemann-Franz relation), where $I = -\frac{\pi^2}{k_B} \frac{k_B}{2}$

 $L_0 = \frac{\pi^2}{3} \left(\frac{k_B}{e}\right)^2$ is the Lorentz number. The quantities σ and k_e are computed with respect to the relaxation time $\tau = (T_0 \times n_0^{1/3})/(Tn^{1/3}) \times 10^{-14}s$ where n_0 is the carrier concentration at

 $T_0 = 300 K$. The figure of merit (*zT*) is calculates using $zT = \frac{S^2 \sigma T}{(k_e + k_l)}$.

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³	
	NaScSe ₂						
Na01	0.0247(9)	0.0247(9)	0.0234(16)	0.0123(4)	0.000	0.000	
Sc01	0.0115(3)	0.0115(3)	0.0174(6)	0.00577(17)	0.000	0.000	
Se01	0.01196(19)	0.01196(19)	0.0157(3)	0.00598(10)	0.000	0.000	
	NaScTe ₂						
Na01	0.037(6)	0.037(6)	0.030(8)	0.019(3)	0.000	0.000	
Sc01	0.0117(19)	0.0117(19)	0.039(4)	0.0058(10)	0.000	0.000	
Te01	0.0146(6)	0.0146(6)	0.0343(10)	0.0073(3)	0.000	0.000	

Table SI1 The atomic displacement parameters (Å²) for the NaSc $Q_2(Q = \text{Se and Te})$ structures.

Table SI2 The geometric parameters (Å) for the NaScSe₂ structure.

Na01—Se01 ⁱ	2.9814 (5)	Na01—Na01 ^x	3.9191 (6)
Na01—Se01 ⁱⁱ	2.9814 (5)	Na01—Na01 ^{xi}	3.9191 (6)
Na01—Se01 ⁱⁱⁱ	2.9814 (5)	Na01—Na01 ^{xii}	3.9191 (6)
Na01—Se01 ^{iv}	2.9814 (5)	Sc01—Se01 ^{xiii}	2.7203 (4)
Na01—Se01 ^v	2.9814 (5)	Sc01—Se01 ^{xiv}	2.7203 (4)
Na01—Se01vi	2.9814 (5)	Sc01—Se01 ^{xv}	2.7203 (4)
Na01—Na01 ^{vii}	3.9191 (6)	Sc01—Se01 ^{xvi}	2.7203 (4)
Na01—Na01 ^{viii}	3.9191 (6)	Sc01—Se01 ^{xvii}	2.7203 (4)
Na01—Na01 ^{ix}	3.9191 (6)	Sc01—Se01 ^{xviii}	2.7203 (4)

Se01 ⁱ —Na01—Se01 ⁱⁱ	180.000 (13)	Se01 ^{iv} —Na01—Na01 ^{xi}	90.0
Se01 ⁱ —Na01—Se01 ⁱⁱⁱ	82.182 (16)	Se01 ^v —Na01—Na01 ^{xi}	48.909 (8)
Se01 ⁱⁱ —Na01—Se01 ⁱⁱⁱ	97.818 (16)	Se01 ^{vi} —Na01—Na01 ^{xi}	131.091 (8)
Se01 ⁱ —Na01—Se01 ^{iv}	97.818 (16)	Na01 ^{vii} —Na01—Na01 ^{xi}	60.0
Se01 ⁱⁱ —Na01—Se01 ^{iv}	82.182 (16)	Na01 ^{viii} —Na01—Na01 ^{xi}	120.0
Se01 ⁱⁱⁱ —Na01—Se01 ^{iv}	180.000 (13)	Na01 ^{ix} —Na01—Na01 ^{xi}	120.0
Se01 ⁱ —Na01—Se01 ^v	82.182 (16)	Na01 ^x —Na01—Na01 ^{xi}	180.0
Se01 ⁱⁱ —Na01—Se01 ^v	97.818 (16)	Se01 ⁱ —Na01—Na01 ^{xii}	90.0
Se01 ⁱⁱⁱ —Na01—Se01 ^v	82.182 (16)	Se01 ⁱⁱ —Na01—Na01 ^{xii}	90.0
Se01 ^{iv} —Na01—Se01 ^v	97.818 (16)	Se01 ⁱⁱⁱ —Na01—Na01 ^{xii}	131.091 (8)
Se01 ⁱ —Na01—Se01 ^{vi}	97.818 (16)	Se01 ^{iv} —Na01—Na01 ^{xii}	48.909 (8)
Se01 ⁱⁱ —Na01—Se01 ^{vi}	82.182 (16)	Se01 ^v —Na01—Na01 ^{xii}	48.909 (8)
Se01 ⁱⁱⁱ —Na01—Se01 ^{vi}	97.818 (16)	Se01 ^{vi} —Na01—Na01 ^{xii}	131.091 (8)
Se01 ^{iv} —Na01—Se01 ^{vi}	82.182 (16)	Na01 ^{vii} —Na01—Na01 ^{xii}	120.0
Se01 ^v —Na01—Se01 ^{vi}	180.000 (13)	Na01 ^{viii} —Na01—Na01 ^{xii}	60.0
Se01 ⁱ —Na01—Na01 ^{vii}	131.091 (8)	Na01 ^{ix} —Na01—Na01 ^{xii}	180.0
Se01 ⁱⁱ —Na01—Na01 ^{vii}	48.909 (8)	Na01 ^x —Na01—Na01 ^{xii}	120.0
Se01 ⁱⁱⁱ —Na01—Na01 ^{vii}	48.909 (8)	Na01 ^{xi} —Na01—Na01 ^{xii}	60.0
Se01 ^{iv} —Na01—Na01 ^{vii}	131.091 (8)	Se01 ^{xiii} —Sc01—Se01 ^{xiv}	180.0
Se01 ^v —Na01—Na01 ^{vii}	90.0	Se01 ^{xiii} —Sc01—Se01 ^{xv}	92.166 (15)
Se01 ^{vi} —Na01—Na01 ^{vii}	90.0	Se01 ^{xiv} —Sc01—Se01 ^{xv}	87.834 (15)
Se01 ⁱ —Na01—Na01 ^{viii}	48.909 (8)	Se01 ^{xiii} —Sc01—Se01 ^{xvi}	87.834 (15)
Se01 ⁱⁱ —Na01—Na01 ^{viii}	131.091 (8)	Se01 ^{xiv} —Sc01—Se01 ^{xvi}	92.166 (15)
Se01 ⁱⁱⁱ —Na01—Na01 ^{viii}	131.091 (8)	Se01 ^{xv} —Sc01—Se01 ^{xvi}	180.0
Se01 ^{iv} —Na01—Na01 ^{viii}	48.909 (8)	Se01 ^{xiii} —Sc01—Se01 ^{xvii}	87.835 (16)
Se01 ^v —Na01—Na01 ^{viii}	90.0	Se01 ^{xiv} —Sc01—Se01 ^{xvii}	92.165 (15)
Se01 ^{vi} —Na01—Na01 ^{viii}	90.0	Se01 ^{xv} —Sc01—Se01 ^{xvii}	87.835 (15)
Na01 ^{vii} —Na01—Na01 ^{viii}	180.0	Se01 ^{xvi} —Sc01—Se01 ^{xvii}	92.165 (15)
Se01 ⁱ —Na01—Na01 ^{ix}	90.0	Se01 ^{xiii} —Sc01—Se01 ^{xviii}	92.165 (15)
Se01 ⁱⁱ —Na01—Na01 ^{ix}	90.0	Se01 ^{xiv} —Sc01—Se01 ^{xviii}	87.835 (16)
Se01 ⁱⁱⁱ —Na01—Na01 ^{ix}	48.909 (8)	Se01 ^{xv} —Sc01—Se01 ^{xviii}	92.165 (15)
Se01 ^{iv} —Na01—Na01 ^{ix}	131.091 (8)	Se01 ^{xvi} —Sc01—Se01 ^{xviii}	87.835 (15)
Se01 ^v —Na01—Na01 ^{ix}	131.091 (8)	Se01 ^{xvii} —Sc01—Se01 ^{xviii}	180.000 (16)

Se01 ^{vi} —Na01—Na01 ^{ix}	48.909 (8)	Sc01 ⁱⁱ —Se01—Sc01 ^{iv}	92.166 (16)
Na01 ^{vii} —Na01—Na01 ^{ix}	60.0	Sc01 ⁱⁱ —Se01—Sc01 ^{vi}	92.166 (16)
Na01 ^{viii} —Na01—Na01 ^{ix}	120.0	Sc01 ^{iv} —Se01—Sc01 ^{vi}	92.166 (15)
Se01 ⁱ —Na01—Na01 ^x	48.909 (8)	Sc01 ⁱⁱ —Se01—Na01 ^{xiv}	173.088 (15)
Se01 ⁱⁱ —Na01—Na01 ^x	131.091 (8)	Sc01 ^{iv} —Se01—Na01 ^{xiv}	92.627 (11)
Se01 ⁱⁱⁱ —Na01—Na01 ^x	90.0	Sc01 ^{vi} —Se01—Na01 ^{xiv}	92.627 (11)
Se01 ^{iv} —Na01—Na01 ^x	90.0	Sc01 ⁱⁱ —Se01—Na01 ^{xvi}	92.627 (11)
Se01 ^v —Na01—Na01 ^x	131.091 (8)	Sc01 ^{iv} —Se01—Na01 ^{xvi}	173.088 (15)
Se01 ^{vi} —Na01—Na01 ^x	48.909 (8)	Sc01 ^{vi} —Se01—Na01 ^{xvi}	92.627 (11)
Na01 ^{vii} —Na01—Na01 ^x	120.0	Na01 ^{xiv} —Se01—Na01 ^{xvi}	82.182 (16)
Na01 ^{viii} —Na01—Na01 ^x	60.0	Sc01 ⁱⁱ —Se01—Na01 ^{xvii}	92.627 (11)
Na01 ^{ix} —Na01—Na01 ^x	60.0	Sc01 ^{iv} —Se01—Na01 ^{xvii}	92.627 (11)
Se01 ⁱ —Na01—Na01 ^{xi}	131.091 (8)	Sc01 ^{vi} —Se01—Na01 ^{xvii}	173.088 (15)
Se01 ⁱⁱ —Na01—Na01 ^{xi}	48.909 (8)	Na01xiv—Se01—Na01xvii	82.182 (16)
Se01 ⁱⁱⁱ —Na01—Na01 ^{xi}	90.0	Na01 ^{xvi} —Se01—Na01 ^{xvii}	82.182 (16)

Symmetry codes: (i) -x+2/3, -y+1/3, -z+1/3; (ii) x-2/3, y-1/3, z-1/3; (iii) -x-1/3, -y-2/3, -z+1/3; (iv) x+1/3, y+2/3, z-1/3; (v) -x-1/3, -y+1/3, -z+1/3; (vi) x+1/3, y-1/3, z-1/3; (vii) x-1, y-1, z; (viii) x+1, y+1, z; (ix) x, y-1, z; (x) x+1, y, z; (xi) x-1, y, z; (xii) x, y+1, z; (xiii) -x-2/3, -y-1/3, -z+2/3; (xiv) x+2/3, y+1/3, z+1/3; (xv) -x+1/3, -y+2/3, -z+2/3; (xvi) x-1/3, y-2/3, z+1/3; (xvii) x-1/3, y-1/3, -z+2/3.

Table SI3 The geometric parameters	(Å) for the	NaScTe ₂ structure.
------------------------------------	----	-----------	--------------------------------

Na01—Te01 ⁱ	3.2180 (11)	Sc01—Te01 ^{vii}	2.9460 (10)
Na01—Te01 ⁱⁱ	3.2180 (11)	Sc01—Te01 ^{viii}	2.9460 (10)
Na01—Te01 ⁱⁱⁱ	3.2180 (11)	Sc01—Te01 ^{ix}	2.9460 (10)
Na01—Te01 ^{iv}	3.2180 (11)	Sc01—Te01 ^x	2.9460 (10)
Na01—Te01 ^v	3.2180 (11)	Sc01—Te01 ^{xi}	2.9461 (10)
Na01—Te01 ^{vi}	3.2180 (11)	Sc01—Te01 ^{xii}	2.9461 (10)
Te01 ⁱ —Na01—Te01 ⁱⁱ	180.00 (5)	Te01 ^{ix} —Sc01—Te01 ^{xi}	88.47 (4)
Te01 ⁱ —Na01—Te01 ⁱⁱⁱ	81.98 (3)	Te01 ^x —Sc01—Te01 ^{xi}	91.53 (4)
Te01 ⁱⁱ —Na01—Te01 ⁱⁱⁱ	98.02 (3)	Te01 ^{vii} —Sc01—Te01 ^{xii}	91.53 (4)

Te01 ⁱ —Na01—Te01 ^{iv}	98.02 (3)	Te01 ^{viii} —Sc01—Te01 ^{xii}	88.47 (4)
Te01 ⁱⁱ —Na01—Te01 ^{iv}	81.98 (3)	Te01 ^{ix} —Sc01—Te01 ^{xii}	91.53 (4)
Te01 ⁱⁱⁱ —Na01—Te01 ^{iv}	180.00 (5)	Te01 ^x —Sc01—Te01 ^{xii}	88.47 (4)
Te01 ⁱ —Na01—Te01 ^v	98.02 (3)	Te01 ^{xi} —Sc01—Te01 ^{xii}	180.00 (5)
Te01 ⁱⁱ —Na01—Te01 ^v	81.98 (3)	Sc01 ⁱⁱ —Te01—Sc01 ^{iv}	91.53 (4)
Te01 ⁱⁱⁱ —Na01—Te01 ^v	98.02 (3)	Sc01 ⁱⁱ —Te01—Sc01 ^v	91.53 (4)
Te01 ^{iv} —Na01—Te01 ^v	81.98 (3)	Sc01 ^{iv} —Te01—Sc01 ^v	91.53 (4)
Te01 ⁱ —Na01—Te01 ^{vi}	81.98 (3)	Sc01 ⁱⁱ —Te01—Na01 ^{viii}	173.41 (5)
Te01 ⁱⁱ —Na01—Te01 ^{vi}	98.02 (3)	Sc01 ^{iv} —Te01—Na01 ^{viii}	93.061 (7)
Te01 ⁱⁱⁱ —Na01—Te01 ^{vi}	81.98 (3)	Sc01v—Te01—Na01 ^{viii}	93.062 (8)
Te01 ^{iv} —Na01—Te01 ^{vi}	98.02 (3)	Sc01 ⁱⁱ —Te01—Na01 ^x	93.061 (8)
Te01v—Na01—Te01vi	180.00 (5)	Sc01 ^{iv} —Te01—Na01 ^x	173.41 (5)
Te01 ^{vii} —Sc01—Te01 ^{viii}	180.0	Sc01 ^v —Te01—Na01 ^x	93.062 (8)
Te01 ^{vii} —Sc01—Te01 ^{ix}	91.53 (4)	Na01 ^{viii} —Te01—Na01 ^x	81.98 (3)
Te01 ^{viii} —Sc01—Te01 ^{ix}	88.47 (4)	Sc01 ⁱⁱ —Te01—Na01 ^{xi}	93.062 (8)
Te01 ^{vii} —Sc01—Te01 ^x	88.47 (4)	Sc01 ^{iv} —Te01—Na01 ^{xi}	93.062 (8)
Te01 ^{viii} —Sc01—Te01 ^x	91.53 (4)	Sc01 ^v —Te01—Na01 ^{xi}	173.41 (5)
Te01 ^{ix} —Sc01—Te01 ^x	180.0	Na01 ^{viii} —Te01—Na01 ^{xi}	81.98 (3)
Te01 ^{vii} —Sc01—Te01 ^{xi}	88.47 (4)	Na01 ^x —Te01—Na01 ^{xi}	81.98 (3)
Te01 ^{viii} —Sc01—Te01 ^{xi}	91.53 (4)		

Symmetry codes: (i) -x+2/3, -y+1/3, -z+1/3; (ii) x-2/3, y-1/3, z-1/3; (iii) -x-1/3, -y-2/3, -z+1/3; (iv) x+1/3, y+2/3, z-1/3; (v) x+1/3, y-1/3, z-1/3; (vi) -x-1/3, -y+1/3, -z+1/3; (vii) -x-2/3, -y-1/3, -z+2/3; (viii) x+2/3, y+1/3, z+1/3; (ix) -x+1/3, -y+2/3, -z+2/3; (x) x-1/3, y-2/3, z+1/3; (xi) x-1/3, y+1/3, z+1/3; (xii) -x+1/3, -y-1/3, -z+2/3.