Self-Assembly of thiolato-bridged ester functionalized Re(I)-based

tetranuclear spiro-metallacyclophanes

Jisna Varghese, Udit Kumar, Shilpa Jose, Aamir Afzal Magray, S. Yeswanth Kumar, R.

Padmanaban, Bala. Manimaran*

Department of Chemistry, Pondicherry University, Puducherry, 605014, India

* Corresponding author. Tel.: +91 413 2654414; fax: +91 413 2656740

E-mail: manimaran.che@pondiuni.edu.in (Bala. Manimaran)

Fig. S1 Stacked IR spectra of tetranuclear spiro-metallacyclophanes 1–3 in CH₂Cl₂.

Fig. S2 Overlay UV–vis absorption spectra of tetranuclear spiro-metallacyclophanes 1-3 in CH_2Cl_2 .

Fig. S3 ¹H NMR spectrum of $[{(CO)_3Re(\mu-SC_6H_5)_2Re(CO)_3}_2(\mu-\eta^4-ptpc)]$ (1) in CDCl₃.

Fig. S4 ¹H NMR spectrum of [{(CO)₃Re(μ -SC₆H₄CH₃)₂Re(CO)₃}₂(μ - η ⁴-ptpc)] (2) in CDCl₃.

Fig. S5 ¹H NMR spectrum of [{(CO)₃Re(μ -SCH₂C₆H₅)₂Re(CO)₃}₂(μ - η ⁴-ptpc)] (**3**) in CDCl₃.

Fig. S6 ¹³C NMR spectrum of [{(CO)₃Re(μ -SC₆H₅)₂Re(CO)₃}(μ - η ⁴-ptpc)] (1) in C₃D₆O.

Fig. S7 ¹³C NMR spectrum of [{(CO)₃Re(μ -SCH₂C₆H₅)₂Re(CO)₃}₂(μ - η ⁴-ptpc)] (**3**) in CDCl₃.

Fig. S8 Experimental (top) and theoretical (bottom) isotopic distribution patterns of ESI-mass spectrum of [{(CO)₃Re(μ -SC₆H₅)₂Re(CO)₃}(μ - η ⁴-ptpc)] (**1**) [M]⁺.

Fig. S9 Experimental (top) and theoretical (bottom) isotopic distribution patterns of ESI-mass spectrum of [{(CO)₃Re(μ -SC₆H₄CH₃)₂Re(CO)₃}₂(μ - η ⁴-ptpc)] (**2**) [M+H]⁺.

Fig. S10 Experimental (top) and theoretical (bottom) isotopic distribution patterns of ESImass spectrum of [{(CO)₃Re(μ -SCH₂C₆H₅)₂Re(CO)₃}(μ - η ⁴-ptpc)] (**3**) [M+H]⁺.

Fig. S11 Electronic absorption spectra of *p*-phenylenediamine $(1.3 \times 10^{-4} \text{ M})$ increasing upon incremental addition of host **2** $(2.0-24.0 \times 10^{-7} \text{ M})$ in tetrahydrofuran and inset shows the corresponding Benesi-Hildebrand plot. Regression analysis was carried out at λ_{max} 249 nm.

Fig. S12 Emission intensity of *p*-phenylenediamine $(1.3 \times 10^{-4} \text{ M})$ decreasing with incremental addition of host **2** $(2.0-24.0 \times 10^{-7} \text{M})$ in tetrahydrofuran and inset shows the corresponding Stern-Volmer plot. Regression analysis was carried out at λ_{max} 387 nm.

Fig. S13 Electronic absorption spectra of quinol $(1.3 \times 10^{-4} \text{ M})$ increasing upon incremental addition of host **2** $(2.0-24.0 \times 10^{-7} \text{ M})$ in tetrahydrofuran and inset shows the corresponding Benesi-Hildebrand plot. Regression analysis was carried out at λ_{max} 225 nm.

Fig. S14 Emission intensity of quinol $(1.3 \times 10^{-4} \text{ M})$ decreasing with incremental addition of host **2** $(2.0-24.0 \times 10^{-7} \text{M})$ in tetrahydrofuran and inset shows the corresponding Stern-Volmer plot. Regression analysis was carried out at λ_{max} 330 nm.

Fig. S15 Electronic absorption spectra of *p*-phenylenediamine $(1.3 \times 10^{-4} \text{ M})$ increasing upon incremental addition of host **3** $(2.0-24.0 \times 10^{-7} \text{ M})$ in tetrahydrofuran and inset shows the corresponding Benesi-Hildebrand plot. Regression analysis was carried out at λ_{max} 252 nm.

Fig. S16 Emission intensity of *p*-phenylenediamine $(1.3 \times 10^{-4} \text{ M})$ decreasing with incremental addition of host **3** $(2.0-24.0 \times 10^{-7} \text{M})$ in tetrahydrofuran and inset shows the corresponding Stern-Volmer plot. Regression analysis was carried out at λ_{max} 380 nm

Fig. S17 Electronic absorption spectra of quinol $(1.3 \times 10^{-4} \text{ M})$ increasing upon incremental addition of host **3** $(2.0-24.0 \times 10^{-7} \text{ M})$ in tetrahydrofuran and inset shows the corresponding Benesi-Hildebrand plot. Regression analysis was carried out at λ_{max} 226 nm.

Fig. S18 Emission intensity of quinol $(1.3 \times 10^{-4} \text{ M})$ decreasing with incremental addition of host **3** $(2.0-24.0 \times 10^{-7} \text{M})$ in tetrahydrofuran and inset shows the corresponding Stern-Volmer plot. Regression analysis was carried out at λ_{max} 331 nm.