Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information for

Deciphering Swift Reversal of Multifaceted Photodynamics of a Novel Pyrene Appended

Unsymmetrical Salicylaldehyde Azine Derivative in Aqueous and Protein Environments

Tapashree Mondal, Sourav Biswas, Manoj V. Mane and Sujit S. Panja*

TABLE OF CONTENTS

Sl. No.	Content	Figure No.
1.	¹ H NMR spectrum of PHCS	S1
2.	¹³ C NMR spectrum of PHCS	82
3.	FT-IR spectrum of PHCS	83
4.	ESI-MS spectrum of PHCS	S 4
5.	TD-DFT calculated theoretical absorption spectrum of PHCS	85
6.	Spectral overlap study between donor and acceptor	S 6
7.	Effect of addition of trifluoroacetic acid on PL spectra of PHCS	S 7
8.	Ratio of keto by enol isomer of PHCS with water variation in THF	S8

9.	Selected optimized geometrical parameters for PHCS in the ground state calculated at B3LYP levels	Table S1
10.	Electronic states involved in the absorption transitions of PHCS	Table S2
11.	Fluorescence lifetime decay parameters of PHCS in THF	Table S3
12.	Fluorescence lifetime decay parameters of PHCS upon variation in fluorophore concentration in solution	Table S4

Fig. S1 ¹H NMR spectrum of PHCS.

Fig. S2 ¹³C NMR spectrum of PHCS.

Fig. S3 FT-IR spectrum of PHCS.

Fig. S4 ESI-MS spectrum of PHCS.

Fig. S5 Simulated UV-visible absorption spectrum of **PHCS** obtained by TD-DFT method (in gas phase medium).

Fig. S6 Spectral overlap study between donor (pyrene) and acceptor (5-chlorosalicylaldehyde).

Fig. S7 Effect of addition of trifluoroacetic acid (5 μ l) on fluorescence spectra of PHCS (15 μ M) in THF. Ex = 375 nm, slit = 5/5 nm.

Fig. S8 Ratio of keto by enol isomer of PHCS with water variation in THF.

Table S1. Selected optimized geometrical parameters for **PHCS** in the ground state calculated at B3LYP levels.

Bond distance (Å)						
C ₁₁ -C ₂₆	1.455	N ₂₉ -C ₃₀	1.307			
C ₂₆ -N ₂₈ 1.304		C ₃₀ -C ₃₂	1.447			
N ₂₈ -N ₂₉	1.413	C42-C43	1.012			
Bond Angle (°)						
C ₁₁ -C ₂₆ -N ₂₈ 126.5		N ₂₉ -C ₃₀ -C ₃₂	121.3			
N ₂₈ -N ₂₉ -C ₃₀ 114.4		N ₂₉ -H ₄₃ -O ₄₂	144.5			

Table S2. Electronic states involved in absorption, wavelength (nm), excitation energy (eV) and the corresponding oscillator strength (f) for the transitions of **PHCS** (obtained from TD-DFT calculations).

Excitation energy (eV)	Wavelength (nm)	Oscillator strength (f)	MO contributions	
4.115	301.25	0.2552	HOMO-2 → LUMO	
2.969	417.47	0.9284	$HOMO \rightarrow LUMO$	

Table S3. Fluorescence lifetime decay parameters of PHCS in THF.

Solvent	τ ₁ (ns)	α ₁ (%)	τ ₂ (ns)	α2 (%)	τ _{av} (ns)	χ ²	k _{et} (10 ⁹ s ⁻¹)
THF	0.435	98.69	2.854	1.31	1.035	1.09	1.95

Table S4. Fluorescence lifetime decay parameters of **PHCS** (0-40 μ M) in THF solvent. Excitation = 375 nm nanoLED source, emission = 450 nm, bandpass = 6 nm, peak preset = 2000.

Concentration of PHCS solution (µM)	τ ₁ (ns)	τ ₂ (ns)	a ₁ (%)	a2 (%)	τ _{av} (ns)	χ^2
1	0.039	0.915	96.41	3.59	0.039	1.14
5	0.069	1.327	91.31	8.69	0.075	1.01
10	0.077	1.609	85.82	14.18	0.089	1.1
15	0.435	2.854	98.69	1.31	1.035	1.09
40	1.145	5.716	30.41	69.59	2.581	1.16