Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Efficient dehydrogenation of high concentration formic acid over PdAu/AC-NH₂

catalyst without additives under ambient conditions

Shuchao Jiang,^a Guoqing Ren,*^a Tie Yu,*^a

^a Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.

Corresponding authors:

Guoqing Ren: renguoqing@sdu.edu.cn; Tie Yu: yutie043116@tju.edu.cn

 $\textbf{Fig. S1} \text{ TEM imagines of (a) Pd/AC-NH}_2\text{, (b) Pd}_4\text{Au}_1\text{/AC-NH}_2\text{, (c) Pd}_2\text{Au}_3\text{/AC-NH}_2\text{ and (d) Pd}_1\text{Au}_4\text{/AC-NH}_2\text{.}$

Fig. S2 Survey XPS characterization of $Pd_3Au_2/AC-NH_2$.

Fig. S3 TOF values' change with the concentration of FA at 303 K.

Fig. S4 TEM image of $Pd_3Au_2/AC-NH_2$ after 3 cycles of 5 M FA dehydrogenation (a) and neat FA (b). XPS spectra of $Pd_3Au_2/AC-NH_2$ before reaction and after 3 cycles of 5 M FA dehydrogenation and neat FA at 303 K.

Fig. S5 Mass spectrum (MS) of gas products over Pd₃Au₂/AC-NH₂ using He carrier gas (Neat FA, 1 mL, 303 K).

Fig. S6 Arrhenius plot (ln (TOF) vs. 1000*1/T of Pd₃Au₂/AC-NH₂ catalyst.

Fig. S7 (a) The relationship between TOF values and Pd binding energy. (b) A trade-off relation between Pd bind energy

and surface energy as a function of Au content.

Catalyst	Pd / wt.%	Au / wt.%	Mole ratio of Pd/Au
Pd/AC-NH ₂	3.39	/	/
Pd ₄ Au ₁ /AC-NH ₂	2.95	1.26	4.35
Pd ₃ Au ₂ /AC-NH ₂	2.26	2.21	1.90
Pd ₂ Au ₃ /AC-NH ₂	1.57	4.22	0.69
Pd ₁ Au ₄ /AC-NH ₂	0.75	5.62	0.24
Pd ₃ Au ₂ /AC	2.41	2.38	1.88
Used Pd ₃ Au ₂ /AC-NH ₂ ^a	2.13	2.11	1.78

 Table S1 ICP results of the as prepared catalysts.

a ICP results of $Pd_3Au_2/AC-NH_2$ after three cycles of neat FA dehydrogenation at 303 K.

 $\label{eq:stables} \textbf{Table S2} \ The \ textural \ properties \ of \ various \ samples \ measured \ by \ N_2 \ adsorption/desorption \ isotherms.$

Different stages	S_{BET}/m^2g^{1}	Pore volume / $cm^{-3} g^{-1}$	Pore size / nm
AC	939	0.66	5.34
Pd ₃ Au ₂ /AC	877	0.63	5.34
AC-NH ₂	421	0.50	5.22
Pd ₃ Au ₂ /AC-NH ₂	399	0.43	5.75

Samples	C / wt.%	H / wt.%	N^a / wt.%	N^{b} / wt.%
Fresh Pd ₃ Au ₂ /AC-NH ₂	63.57	3.52	2.88	5.23
Used Pd ₃ Au ₂ /AC-NH ₂ ^c	64.15	2.44	2.44	/

Table S3 Elemental content analysis of Pd₃Au₂/AC-NH₂.

a Determined by Element Analysis (EA). b Determined by survey XPS. c Elemental content analysis of Pd₃Au₂/AC-

 $\rm NH_2$ after three cycles of neat FA dehydrogenation at 303 K.

Catalyst	Temp. / K	Additives	TOF / h ⁻¹	Ref.
Pd ₃ Au ₂ /AC-NH ₂	293	5 M FA	1830 ^b	
	303	5 M FA	3300 ^b	
	313	5 M FA	5730 ^b	41
	323	5 M FA	8710 ^b	this work
	303	1 M FA	4355 ^a	
	303	Neat FA	603 ^b	
$Pd_{0.85}Ir_{0.15}/SBA-15-NH_2$	298	1 M FA	1500 ^b	34
PdMn _{0.6} @S-1	298	1 M FA	610 ^b	6
Ni _{0.4} Pd _{0.6} /NH ₂ -N-rGO	298	1 M FA	954 ^b	16
Au ₁ Pd _{1.5} /MIL-101-NH ₂	298	1 M FA / SF	526 ^b	33
Pd ₁ Au ₁ /72-LA	303	1 M FA / SF	3583ª	37
Au ₂ Pd ₃ @(P)N-C	303	1 M FA	358ª	32
Pd@SS-CNR	303	1 M FA / SF	1878 ^b	30
Pd/CZIF-8-950	303	1 M FA / SF	1166 ^b	49
$Pd@Bi_{0.11}/C$	313	1 M FA / SF	4100 ^b	31
Pd@CN900K	323	1 M FA / SF	8000 ^a	14
0.8Pd-0.2Ni(OH)2@S-1	333	1 M FA / SF	5803 ^b	39
(Co ₆)Ag _{0.1} Pd _{0.9} /rGO	333	1 M FA / SF	2739 ^b	15
Pd _{0.6} Ag _{0.4} @ZrO ₂ /C/rGO	333	1 M FA / SF	4300 ^b	38
Au@SiO ₂	403	1 M FA	403 ^b	45
Pd/C	293	6.6 M	87 ^b	29

Table S4 Catalytic activities of reported catalysts for the dehydrogenation of formic acid.

CoAgPd/MIL-101	323	1.5 M FA / SF	98 ^b	40
AgPd/0.2CND/SBA-15	323	1.5 M FA / SF	893 ^b	35
Pd/XC-72R	333	2.6 M FA / SF	7256 ^b	30
Au/m-ZrO ₂	353	10.5 M FA	660 ^b	46
Au/SiO ₂ -Schiff	323	10 M FA	4683 ^b	47
Pd ₆₀ Au ₄₀ /HPC-NH ₂	298	1 M FA	3763 ^b	57
Au _{0.5} Pd _{0.5} /NH ₂ -N-rGO	298	1 M FA	4446 ^b	43
Pd ₆₀ Au ₄₀ /ZrSBA-15-AP	298	2 M FA	1185 ^b	41
Au _{0.4} Pd _{0.6} /CBH-A	298	1 M FA	5625 ^b	42

a: TOF value was calculated based on the completion time of gas releasing.

b: Initial TOF was calculated based on the initial conversion of FA.

SF: Sodium Formate.