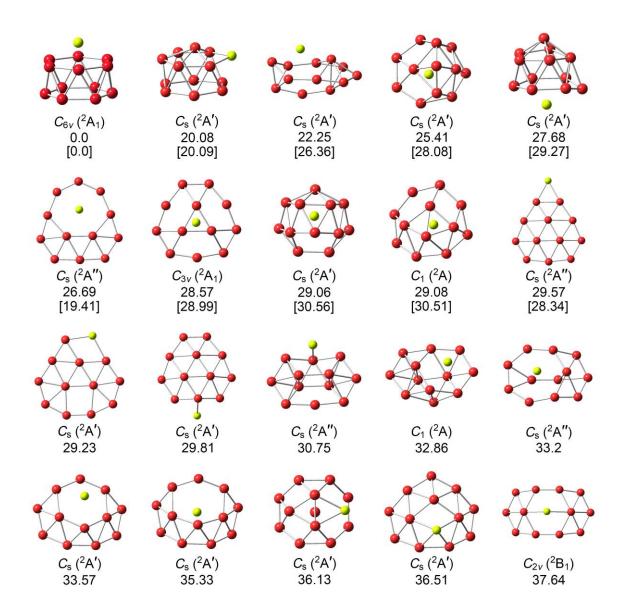
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

SUPPLEMENTARY INFORMATION

Boron-based tubular BeB₁₂⁺ and quasi-planar BeB₁₂^{0/-} clusters: structural transformation and chemical bonding⁺

Lin-Yan Feng,* Ying-Jin Wang, Xiao-Bo Hu, Chang-Qing Miao, Miao Yan, and Yan Gao


Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, Shanxi, China

*E-mail: fenglinyan@sxu.edu.cn

- **Table S1.**Cartesian coordinates for the global-minimum (GM) structures of $BeB_{12}^{-/0/+}$ clusters at the PBE0/6-311+G (d) level.
- Figure S1. Alternative low-lying structures of BeB_{12}^+ cluster at the PBE0-D3/6-311+G(d) level. Relative energies are shown with corrections for zero-point energies (ZPEs). Also shown are energies for top ten low-lying isomers at the single-point CCSD(T)/6-311+G(d) level in square brackets. All energies are in kcal mol⁻¹.
- Figure S2. Alternative low-lying structures of BeB₁₂ cluster at the PBE0-D3/6-311+G(d) level. Relative energies are shown with corrections for zero-point energies (ZPEs). Also shown are energies for top low-lying isomers at the single-point CCSD(T)/6-311+G(d) level in square brackets. All energies are in kcal mol⁻¹.
- Figure S3. Alternative low-lying structures of BeB₁₂⁻ cluster at the PBE0-D3/6-311+G(d) level. Relative energies are shown with corrections for zero-point energies (ZPEs). Also shown are energies for top low-lying isomers at the single-point CCSD(T)/6-311+G(d) level in square brackets. All energies are in kcal mol⁻¹.

- **Figure S4.** Calculated Wiberg bond indices (WBIs; in bule color) and natural atomic charges (in |e|; red color) at the PBE0/6-311+G(d) level. (a) Cationic BeB₁₂⁺ (**1**, $C_{6\nu}$, ²A₁) cluster. (b) Neutral BeB₁₂ (**2**, C_s , ¹A') cluster. (c) Anionic BeB₁₂⁻ (**3**, $C_{2\nu}$, ²A₂) cluster.
- **Figure S5.** Calculated (a) bond distances (in Å; black color), (b) Wiberg bond indices (WBIs; blue color), and (c) natural atomic charges (in |e|; red color) of a local minimum structure for BeB₁₂ cluster.
- **Figure S6.** An alternative AdNDP bonding scheme of tubular BeB_{12}^+ cluster, in which the contribution of third B atom is excluded. The occupation numbers (ONs) are slightly less than those in delocalized 3c-2e σ scheme (in Fig. 3).
- **Figure S7.** The occupied canonical molecular orbital (CMOs) of neutral BeB₁₂ (**2**, C_s , ¹A'). (a) Three delocalized π bonds. (b) Five delocalized σ bonds. (c) One delocalized σ bond in the BeB₂ core. (d) Ten delocalized σ bonds for peripheral two-center two-electron (2c-2e) B–B single bonds.
- **Figure S8.** AdNDP bonding analysis of LM (C_s , ¹A') structure for neutral BeB₁₂. The ON are indicated.
- **Figure S9.** Selected optimized structures at PBE0-D3/6-311+G(d) level for (a) GM BeB₁₂⁺ (1, $C_{6\nu}$, ²A₁); (b) LM LiB₁₂ ($C_{2\nu}$, ²A'), and (c) GM Li₂B₁₂ (D_{6d} , ¹A₁). Bond distances (in Å) are shown.
- Figure S10. The displacement vectors of soft vibrational modes of neutral BeB₁₂ cluster (a) global-minimum (GM) and (b) transition state (TS) structure at PBE0-D3/6-311+G(d) level, which relevant to the rotation between the peripheral B₁₀ and inner BeB₂ core.

Figure S1. Alternative low-lying structures of BeB_{12}^+ cluster at the PBE0-D3/6-311+G(d) level. Relative energies are shown with corrections for zero-point energies (ZPEs). Also shown are energies for top ten low-lying isomers at the single-point CCSD(T)/6-311+G(d) level in square brackets. All energies are in kcal mol⁻¹.

Figure S2. Alternative low-lying structures of BeB_{12} cluster at the PBE0-D3/6-311+G(d) level. Relative energies are shown with corrections for zero-point energies (ZPEs). Also shown are energies for top low-lying isomers at the single-point CCSD(T)/6-311+G(d) level in square brackets. All energies are in kcal mol⁻¹.

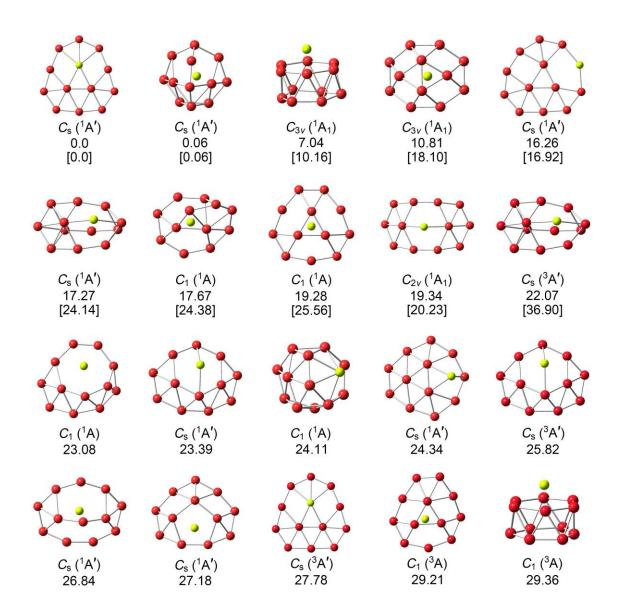
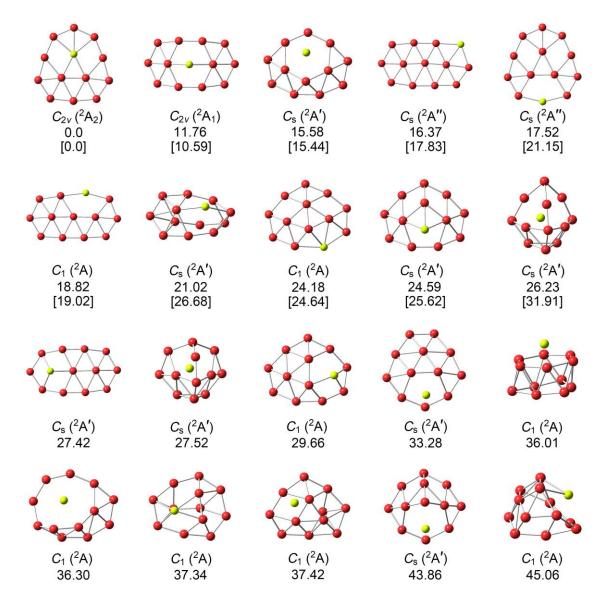
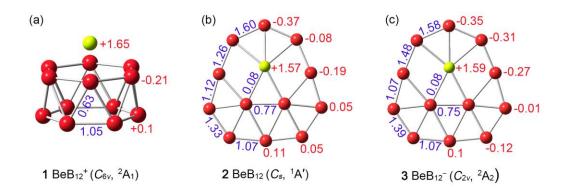
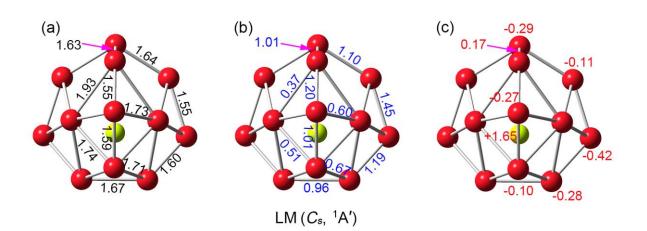
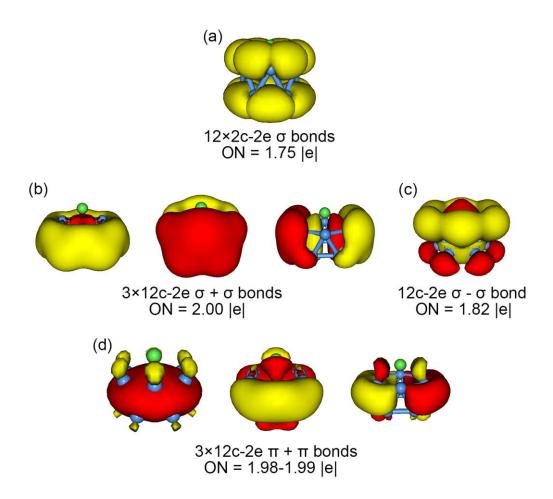
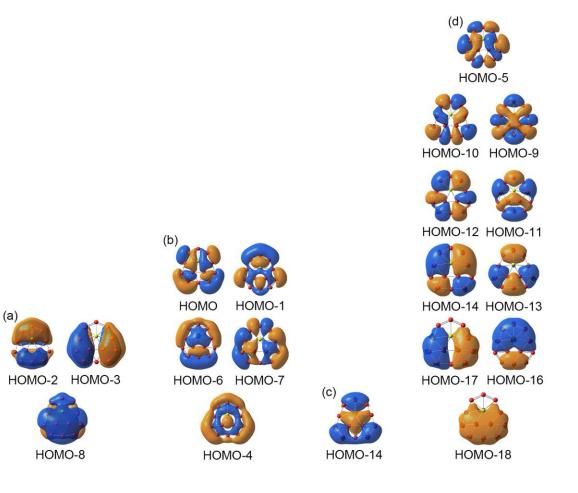
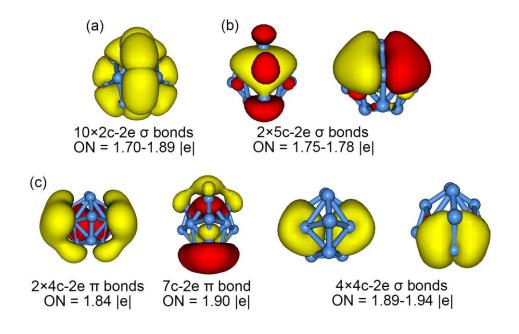



Figure S3. Alternative low-lying structures of BeB₁₂⁻ cluster at the PBE0-D3/6-311+G(d) level. Relative energies are shown with corrections for zero-point energies (ZPEs). Also shown are energies for top low-lying isomers at the single-point CCSD(T)/6-311+G(d) level in square brackets. All energies are in kcal mol⁻¹.

Figure S4. Calculated Wiberg bond indices (WBIs; in bule color) and natural atomic charges (in |e|; red color) at the PBE0/6-311+G(d) level. (a) Cationic BeB₁₂⁺ (**1**, $C_{2\nu}$, ²A₁) cluster. (b) Neutral BeB₁₂ (**2**, C_s , ¹A') cluster. (c) Anionic BeB₁₂⁻ (**3**, $C_{2\nu}$, ²A₂) cluster.


Figure S5. Calculated (a) bond distances (in Å; black color), (b) Wiberg bond indices (WBIs; blue color), and (c) natural atomic charges (in |e|; red color) of a local minimum (LM) structure for BeB₁₂ cluster.


Figure S6. An alternative AdNDP bonding scheme of tubular BeB_{12}^+ cluster, in which the contribution of third B atom is excluded. The occupation numbers (ONs) are slightly less than those in delocalized 3c-2e σ scheme (in Fig. 3).

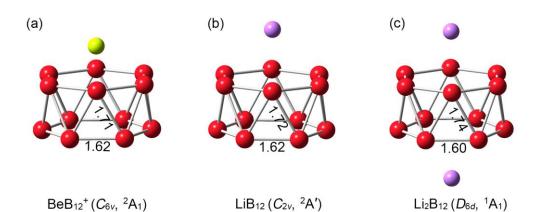

Figure S7. The occupied canonical molecular orbital (CMOs) of neutral BeB₁₂ (**2**, C_s , ¹A'). (a) Three delocalized π bonds. (b) Five delocalized σ bonds. (c) One delocalized σ bond in the BeB₂ core. (d) Ten delocalized σ bonds for peripheral two-center two-electron (2c-2e) B–B single bonds.

Figure S8. AdNDP bonding analysis of LM (C_s , ¹A') structure for neutral BeB₁₂. The ON are indicated.

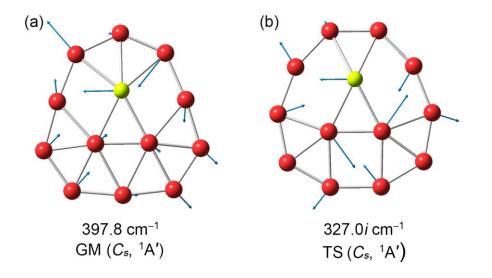


Figure S9. Selected optimized structures at PBE0-D3/6-311+G(d) level for (a) GM BeB₁₂⁺ (**1**, $C_{6\nu}$, ²A₁); (b) LM LiB₁₂ ($C_{2\nu}$, ²A'), and (c) GM Li₂B₁₂ (D_{6d} , ¹A₁). Bond distances (in Å) are shown.

S11

Figure S10. The displacement vectors of soft vibrational modes of neutral BeB₁₂ cluster (a) global-minimum (GM) and (b) transition state (TS) structure at PBE0-D3/6-311+G(d) level, which relevant to the rotation between the peripheral B₁₀ and inner BeB₂ core.

Table S1.Cartesian coordinates for the global-minimum (GM) structures of $BeB_{12}^{-/0/+}$ clusters at the PBE0/6-311+G (d) level.

(a) BeB_{12}^+ (**1**, $C_{6\nu}$, ${}^2\text{A}_1$)

В	0.00000000	1.61887800	0.63578400
В	-1.61599500	0.00000000	-0.85526500
В	0.80794900	1.39950200	-0.85517100
В	0.00000000	-1.61887800	0.63578400
В	1.40171300	-0.80928300	0.63574100
В	-1.40171300	-0.80928300	0.63574100
В	-0.80794900	1.39950200	-0.85517100
Be	0.00000000	0.00000000	1.64585000
В	-1.40171300	0.80928300	0.63574100
В	-0.80794900	-1.39950200	-0.85517100
В	0.80794900	-1.39950200	-0.85517100
В	1.40171300	0.80928300	0.63574100
В	1.61599500	0.00000000	-0.85526500

(b) $BeB_{12}(2, C_s, {}^{1}A')$

В	-0.09892000	-2.10072200	1.59815500
В	0.00847200	0.70463100	2.02077600
В	-0.09949000	2.81892400	0.00000000
В	0.00847200	0.70463100	-2.02077600

В	-0.09892000	-2.10072200	-1.59815500
В	-0.06286900	-0.82152300	-2.46756800
В	-0.05718900	-2.25625300	0.00000000
В	-0.06286900	-0.82152300	2.46756800
В	-0.08228900	2.18191100	1.40791900
В	0.19697200	-0.64598400	-0.84437800
В	0.19697200	-0.64598400	0.84437800
В	-0.08228900	2.18191100	-1.40791900
Be	0.29243400	1.00087800	0.00000000

(c) BeB_{12}^{-} (**3**, $C_{2\nu}$, ²A₂)

В	0.00000000	1.60891400	-2.11192300
В	0.00000000	0.00000000	-2.26160400
В	0.00000000	1.42677500	2.18750700
В	0.00000000	-1.60891400	-2.11192300
В	0.00000000	2.46807400	-0.82713700
В	0.00000000	-2.46807400	-0.82713700
В	0.00000000	2.03265900	0.73446100
В	0.00000000	-0.84383500	-0.66035900
В	0.00000000	0.84383500	-0.66035900
В	0.00000000	-2.03265900	0.73446100
В	0.00000000	-1.42677500	2.18750700
В	0.00000000	0.00000000	2.82480200
В	0.00000000	0.00000000	0.98963100