Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Solvent Controlled Three-Component Reaction of Diazo Compounds for the Synthesis of Hydrazone Compounds under Brønsted Acid Catalysis

Hangli He^{a, b}, Zhewei Yan^{a, b}, Junyong Wang^b, Qiongjiao Yan^a, Wei Wang^a, Haifeng Wang^{*a, b}, Fener Chen^{*a, c, d}

^a Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China

^b School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China

^c Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China

^d Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China.

Email: rfchen@fudan.edu.cn; skytacle@139.com.

Table of Contents

1.	General Information and Materials	2
2.	General Experimental Procedures	2
3.	Mechanistic Studies	4
4.	References	4
5.	Characterization Data of Compounds	5
6.	NMR Spectra of Compounds	15
7.	X-ray Diffraction Parameters and Data of 3n and 4k	52

1. General Information and Materials

All ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded on Brucker spectrometers in DMSO-*d*₆. Chemical shifts (δ) for NMR were quoted in ppm relative to the solvent peak (2.50 ppm for ¹H and 40.00 ppm for ¹³C in DMSO-*d*₆). Chemical shifts are reported in parts per million as follows: chemical shift, multiplicity (s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet). Coupling constants *J* are recorded in Hz. High-resolution mass spectra (HRMS) were reported from the Thermo Orbitrap Elite or Bruker Daltonics APEXII 47e FT-ICR instrument with an ESI source. Single crystal X-ray diffraction data (**3n** and **4k**) was recorded on Bruker-AXS SMART APEX II single crystal X-ray diffractometer.

Unless otherwise noted, all reactions were carried out under nitrogen in a flamedried or oven-dried flask containing magnetic stir bar. Diazo compounds **1a–t** were prepared according to literature reported procedure¹. *N*-aminophthalimide (**2**) was purchased from Bidepharm.com and were used directly without further purification. The other materials obtained from commercial suppliers were used directly without further purification. Reactions were monitored by thin layer chromatography (TLC) using pre-coated silica gel plates (GF254). Flash column chromatography was performed on silica gel (particle size 200-300 mesh ASTM) and eluted with petroleum ether/ethylacetate. Solvents for the column chromatography were distilled before used.

2. General Experimental Procedures

2.1 General procedure to synthesize 3:

α-Diazo ester 1 (0.26 mmol), N-aminophthalimide 2 (32.4 mg, 0.20 mmol) and

CH₃CN (1 mL) were added into a 10 mL glass tube. Then a solution of CF₃SO₃H (3.0 mg, 0.02 mmol, 10 mol %) dissolved in CH₃CN (1 mL) was introduced into the reaction mixture. The resulting mixture was continually stirred under nitrogen atmosphere at room temperature for 5 mins. The reaction solution was quenched with saturated aq. NaCl and extracted with CH₂Cl₂ (5 mL×3). The combined organic phase was dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4:1) to afford the pure product **3**.

2.2 General procedure to synthesize 4:

 α -Diazo ester 1 (0.40 mmol), *N*-aminophthalimide 2 (32.4 mg, 0.20 mmol) and DMF (1 mL) were added into a 10 mL glass tube. Then a solution of H₃PO₄ (3.0 mg, 0.02 mmol, 10 mol %) dissolved in DMF (1 mL) was introduced into the reaction mixture. The resulting mixture was continually stirred under nitrogen atmosphere at 80 °C for 5 hours. The reaction solution was quenched with saturated aq. NaCl and extracted with CH₂Cl₂ (5 mL×3). The combined organic phase was dried over anhydrous Na₂SO₄, filtrated and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to afford the pure product **4**.

3. Mechanistic Studies

1) Active intermediate studied A): TfOH (10 mol %) 2 _ 1a No reaction MeCN, r.t. 5 mins TfOH (10 mol %) No reaction 1a 3a 73% 2 5 mins B): 1a H₃PO₄ (10 mol %) 2 DMF, 80 ℃ No reaction 5 h $\frac{\text{H}_{3}\text{PO}_{4} (10 \text{ mol }\%)}{\text{DMF, 80 }^{\circ}} \text{ No reaction } \xrightarrow{1a} 4a 70\%$ 2 5 h 2) Anhydrous experiment A): TfOH (10 mol %) anhydous CH₃CN, r.t. **3a** 1a + 2 73% B): 1a + 2 $\frac{H_3PO_4 (10 \text{ mol }\%)}{\text{anhydous DMF, 80 °C}} 4a$ 74% 2) Deuteration studied A): OEt 1a + 2 TfOH (10 mol %) ĊD₃ Ph 74% ò 3a' D/H>99% B): 0 1a + 2 $\frac{H_3PO_4 (10 \text{ mol }\%)}{D_3C_N D}$ 72% OH 4a' D/H>99%

Scheme 4. Mechanistic studies

4. References

(1) (a) M. Hu, J. Rong, W. Miao, C. Ni, Y. Han and J. Hu, Copper-mediated trifluoromethylthiolation of alpha-diazoesters, *Org Lett*, 2014, 16, 2030-2033; (b) J. X. Guo, T. Zhou, B. Xu, S. F. Zhu and Q. L. Zhou, Enantioselective synthesis of alpha-

alkenyl alpha-amino acids via N-H insertion reactions, Chem Sci, 2016, 7, 1104-1108.

5. Characterization Data of Compounds

ethyl (E)-2-(N'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-phenylacetate (3a)

Yellow oil, yield: 73% ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.99 (d, *J* = 6.7 Hz, 1H), 7.81 (d, *J* = 8.7 Hz, 4H), 7.57 – 7.47 (m, 2H), 7.46 – 7.37 (m, 3H), 5.48 (d, *J* = 6.6 Hz, 1H), 4.22 – 4.07 (m, 2H), 1.85 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100

MHz, DMSO-*d*₆): δ = 170.9, 167.0, 165.6, 136.5, 134.6, 131.0, 129.2, 128.8, 128.3, 123.1, 61.3, 58.9, 16.2, 14.4; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀H₁₉N₃O₄⁺: 366.1448; found: 366.1450.

ethyl (*E*)-2-(*N*'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-(2-nitrophenyl)acetate (3b)

Yellow oil, yield: 63%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.27 (d, *J* = 7.5 Hz, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.85 – 7.76 (m, 5H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.63 (d, *J* = 7.4 Hz, 1H), 6.35 (d, *J* = 7.5 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 1.88 (s, 3H),

1.18 (t, J = 7.1 Hz, 3H).; ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 169.3$, 166.8, 165.4, 148.8, 134.6, 134.3, 131.8, 131.0, 130.1, 129.9, 125.3, 123.1, 62.0, 54.5, 16.3, 14.3; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₉N₄O₆⁺: 411.1299; found: 411.1305.

ethyl (*E*)-2-(*N*'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-(3-(trifluoromethyl)phenyl)acetate (3c)

Yellow oil, yield: 59%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.00 (d, *J* = 6.8 Hz, 1H), 7.80 (s, 4H), 7.63 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 5.50 (d, *J* = 6.8 Hz, 1H), 4.14 (dd, *J* = 12.9, 7.1 Hz, 2H), 1.85 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.5, 166.9, 165.5,

136.0, 134.7, 134.5, 132.0, 131.0, 130.5, 123.2, 123.1, 122.0, 61.4, 58.1, 16.2, 14.3; ¹⁹F NMR (376 MHz, DMSO- d_6): $\delta = -61.1$; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₉F₃N₃O₄⁺: 434.1322; found: 434.1330.

ethyl (*E*)-2-(*N*'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-(4-nitrophenyl)acetate (3d)

Yellow oil, yield: 82%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.28 (d, *J* = 8.8 Hz, 2H), 8.21 (d, *J* = 7.0 Hz, 1H), 7.78 (d, *J* = 10.4 Hz, 6H), 5.73 (d, *J* = 7.0 Hz, 1H), 4.16 (dd, *J* = 12.5, 7.1 Hz, 2H), 1.88 (s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 167.0, 166.9, 165.5, 147.8, 144.0, 134.6, 131.0, 129.7, 124.1, 123.2, 61.9, 58.1, 16.3, 14.3;

HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₉N₄O₆⁺: 411.1299; found: 411.1304.

ethyl yl)acetimidamido)acetate (3e)

(E)-2-(4-cyanophenyl)-2-(N'-(1,3-dioxoisoindolin-2-

Yellow oil, yield: 70%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.13 (d, *J* = 7.0 Hz, 1H), 7.92 – 7.88 (m, 2H), 7.79 (s, 4H), 7.70 (d, *J* = 8.2 Hz, 2H), 5.66 (d, *J* = 7.0 Hz, 1H), 4.15 (dd, *J* = 12.1, 7.1 Hz, 2H), 1.87 (s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.0, 166.9, 165.5, 142.0, 134.6, 133.0, 131.0, 129.3, 123.1, 118.9, 111.6, 61.7,

58.3, 16.2, 14.3; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₁₉N₄O₄⁺: 391.1401; found: 391.1404.

ethyl (E)-2-(N'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-(o-tolyl)acetate (3f)

Yellow oil, yield: 70% ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.92 (d, *J* = 7.1 Hz, 1H), 7.80 (s, 4H), 7.32 – 7.23 (m, 4H), 5.76 (d, *J* = 7.2 Hz, 1H), 4.15 (dd, *J* = 9.1, 7.1 Hz, 2H), 2.41 (s, 3H), 1.83 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz,

DMSO- d_6): $\delta = 171.2$, 166.9, 165.7, 137.2, 135.4, 134.6, 131.1, 131.0, 128.7, 127.4, 126.7, 123.1, 61.3, 55.2, 19.4, 16.2, 14.4; HRMS (ESI): m/z [M+H]⁺ calcd for $C_{21}H_{22}N_3O_4^+$: 380.1605; found: 380.1611.

ethyl (E)-2-(N'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-(p-tolyl)acetate (3g)

Yellow oil, yield: 62% ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.92 (d, *J* = 6.6 Hz, 1H), 7.80 (s, 4H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 5.41 (d, *J* = 6.6 Hz, 1H), 4.11 (dd, *J* = 16.4,

7.1 Hz, 2H), 2.32 (s, 3H), 1.84 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 171.0$,

167.0, 165.6, 138.2, 134.6, 133.5, 131.0, 129.7, 128.2, 123.1, 61.2, 58.6, 21.1, 16.2, 14.4; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₁H₂₂N₃O₄⁺: 380.1605; found: 380.1608.

ethyl (*E*)-2-(*N*'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-(2-fluorophenyl)acetate (3h)

Yellow oil, yield: 71%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.04 (d, *J* = 7.1 Hz, 1H), 7.80 (s, 4H), 7.51 (dd, *J* = 8.3, 6.8 Hz, 1H), 7.45 (dd, *J* = 6.3, 1.8 Hz, 1H), 7.28 (t, *J* = 8.1 Hz, 2H), 5.82 (d, *J* = 7.1 Hz, 1H), 4.15 (t, *J* = 7.1 Hz, 2H), 1.85 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-

 d_6): $\delta = 170.1$, 166.9, 165.6, 134.6, 131.0, 130.9, 129.9, 129.8, 125.2, 125.2, 124.0, 123.1, 116.2, 116.0, 61.5, 51.9, 16.2, 14.3; ¹⁹F NMR (376 MHz, DMSO- d_6): $\delta = -117.4 - -117.5$ (m); HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₉FN₃O₄⁺: 384.1354; found: 384.1358.

ethyl (*E*)-2-(*N*'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-(2-iodophenyl)acetate (3i)

Yellow oil, yield: 74%

¹H NMR (400 MHz, DMSO- d_6): $\delta = 7.97 - 7.92$ (m, 2H), 7.80 (s, 4H), 7.51 - 7.42 (m, 2H), 7.14 (td, J = 7.8, 1.8 Hz, 1H), 5.74 (d, J = 6.6 Hz, 1H), 4.15 (dd, J = 9.2, 7.1 Hz, 2H), 1.84 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H); ¹³C NMR

(100 MHz, DMSO- d_6): $\delta = 170.5$, 166.8, 165.6, 140.18, 139.5, 134.6, 131.1, 130.8, 129.2, 128.7, 123.1, 101.9, 62.9, 61.5, 16.2, 14.3; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₉IN₃O₄⁺: 492.0415; found: 492.0407.

ethyl

(E)-2-(2-chlorophenyl)-2-(N'-(1,3-dioxoisoindolin-2-

yl)acetimidamido)acetate (3j)

Yellow oil, yield: 70%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.01 (d, *J* = 7.0 Hz, 1H), 7.80 (s, 4H), 7.57 – 7.49 (m, 2H), 7.44 – 7.38 (m, 2H), 5.95 (d, *J* = 7.0 Hz, 1H), 4.15 (dtd, *J* = 8.6, 4.9, 4.7, 3.7 Hz, 2H), 1.85 (s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.2, 166.9, 165.5,

134.5, 134.5, 133.7, 131.0, 130.5, 130.1, 129.6, 128.0, 123.1, 61.5, 55.5, 16.2, 14.3; HRMS (ESI): *m/z* [M+H]⁺ calcd for C₂₀H₁₉F₃ClN₃O₄⁺: 400.1059; found: 400.1068.

ethyl (vl)acetimidamido)acetate (3k)

Yellow oil, yield: 65%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.98 (d, *J* = 6.7 Hz, 1H), 7.80 (s, 4H), 7.49 – 7.39 (m, 4H), 5.46 (d, *J* = 6.6 Hz, 1H), 4.22 – 3.98 (m, 2H), 1.85 (s, 3H), 0.77 (d, *J* = 4.7 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.4, , 167.0, 165.6, 138.9, 134.6, 133.7, 131.0, 128.8,

(E)-2-(3-chlorophenyl)-2-(N'-(1,3-dioxoisoindolin-2-

128.1, 127.2, 123.1, 61.6, 58.2, 16.2, 14.3; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₉ClN₃O₄⁺: 400.1059; found: 400.1063.

ethyl fluorophenyl)acetate (31)

Yellow oil, yield: 68%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.00 (d, *J* = 6.6 Hz, 1H), 7.80 (s, 4H), 7.54 (dd, *J* = 8.6, 5.5 Hz, 2H), 7.26 (t, *J* = 8.8 Hz, 2H), 5.49 (d, *J* = 6.6 Hz, 1H), 4.13 (qd, *J* = 10.7, 7.1 Hz, 2H), 1.85 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.8, 166.9, 165.6, 134.6, 132.8, 131.0, 130.5, 130.5, 123.1, 116.0, 115.9,

61.4, 58.1, 16.2, 14.3; ¹⁹F NMR (376 MHz, DMSO- d_6): δ = -113.65 - -113.87 (m); HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₉FN₃O4⁺: 384.1354; found: 384.1367.

(E)-2-(4-bromophenyl)-2-(N'-(1,3-dioxoisoindolin-2-

ethyl

Yellow oil, yield: 57%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.12 (d, *J* = 6.7 Hz, 1H), 7.87 – 7.67 (m, 8H), 5.67 (d, *J* = 6.8 Hz, 1H), 4.16 (dd, *J* = 10.3, 7.2 Hz, 2H), 1.87 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.3, 166.9, 165.5, 137.9, 134.5, 132.5, 131.0, 130.2, 125.5, 124.7, 123.1, 61.6, 58.1, 16.2, 14.2; HRMS (ESI): *m*/*z*

 $[M+H]^+$ calcd for $C_{20}H_{19}BrN_3O4^+$: 444.0553; found: 444.0557.

ethyl (*E*)-2-(2,4-dichlorophenyl)-2-(*N*'-(1,3-dioxoisoindolin-2yl)acetimidamido)acetate (3n)

Yellow oil, yield: 71%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.11 (d, *J* = 7.2 Hz, 1H), 7.79 (s, 4H), 7.71 (d, *J* = 0.7 Hz, 1H), 7.53 (d, *J* = 1.5 Hz, 2H), 5.92 (d, *J* = 7.0 Hz, 1H), 4.17 (dt, *J* = 7.2, 2.9 Hz, 2H), 1.85 (s, 3H), 1.18 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 169.8, 166.8, 165.5, 134.7, 134.6, 134.2, 133.9, 131.0, 131.0, 129.6, 128.2,

123.1, 61.8, 55.1, 16.3, 14.3; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₀H₁₈Cl₂N₃O₄⁺: 434.0669; found: 434.0676.

isobutyl (E)-2-(N'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-phenylacetate (30)

Yellow oil, vield: 57%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.99 (d, *J* = 6.8 Hz, 1H), 7.80 (s, 4H), 7.51 (dd, *J* = 8.1, 1.3 Hz, 2H), 7.45 – 7.38 (m, 3H), 5.52 (d, *J* = 6.8 Hz, 1H), 3.87 (dd, *J* = 6.5, 1.3 Hz, 2H), 1.86 (s, 3H), 0.79 (dd, *J* = 6.7, 5.4 Hz, 6H); ¹³C NMR (100 MHz,

DMSO-*d*₆): δ = 170.9, 167.0, 165.6, 136.6, 134.5, 131.0, 129.1, 128.8 128.3, 123.1, 70.9, 58.8, 27.6, 19.1, 19.1, 16.1; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₂H₂₄N₃O₄⁺:

isopentyl (E)-2-(N'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-phenylacetate (3p)

Yellow oil, yield: 52%

¹H NMR (400 MHz, DMSO- d_6): δ = 7.96 (d, J = 6.7 Hz, 1H), 7.80 (s, 4H), 7.51 – 7.47 (m, 2H), 7.39 (ddd, J = 12.4, 8.3, 5.5 Hz, 3H), 5.47 (d, J = 6.6 Hz, 1H), 4.11 (ddd, J = 17.5, 10.9, 4.4 Hz, 2H), 1.85 (s, 3H), 1.54 (dt, J = 13.3, 6.6 Hz, 1H),

1.43 (q, J = 6.8 Hz, 2H), 0.78 (dd, J = 6.6, 2.0 Hz, 6H); ¹³C NMR (100 MHz, DMSO d_6): $\delta = 170.9$, 166.9, 165.5, 136.4, 134.5, 131.0, 129.1, 128.8, 128.3, 123.1, 63.6, 58.9, 37.1, 24.7 22.5, 16.1; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₂₆N₃O₄⁺: 408.1918; found: 408.1924.

benzyl (E)-2-(N'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-phenylacetate (3q)

¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.04$ (d, J = 6.5 Hz, 1H), 7.85 – 7.78 (m, 4H), 7.51 (dd, J = 7.8, 1.6 Hz, 2H), 7.44 – 7.38 (m, 3H), 7.30 – 7.24 (m, 5H), 5.57 (d, J = 6.5 Hz, 1H), 5.18 (dd, J = 56.4, 12.6 Hz,

2H), 1.88 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.9, 167.1, 165.6, 136.4, 136.2, 134.6, 131.0, 129.1, 128.9, 128.7, 128.3, 128.1, 123.1, 66.5, 59.0, 40.6, 16.2; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₅H₂₂N₃O₄⁺: 428.1605; found: 428.1607.

allyl (E)-2-(N'-(1,3-dioxoisoindolin-2-yl)acetimidamido)-2-phenylacetate (3r)

Yellow oil, yield: 60%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.01 (d, *J* = 6.7 Hz, 1H), 7.80 (s, 4H), 7.51 (dd, *J* = 8.1, 1.4 Hz, 2H), 7.45 – 7.39 (m, 3H), 5.88 (ddd, *J* = 21.2, 10.6, 5.3 Hz, 1H), 5.54 (d, *J* = 6.7 Hz, 1H), 5.15 (ddd, *J* = 13.1, 10.5, 8.5 Hz, 2H), 4.61 (ddt, *J* = 5.5, 2.8, 1.6

Hz, 2H), 1.86 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.6, 167.0, 165.6, 136.3, 134.5, 132.8, 131.0, 129.1, 128.4, 123.1, 118.0, 65.5, 58.8, 39.6, 16.2; HRMS (ESI): m/z [M+H]⁺ calcd for C₂₁H₂₀N₃O₄⁺: 378.1448; found: 378.1459.

butyl (E)-(1-((1,3-dioxoisoindolin-2-yl)imino)ethyl)glycinate (3s)

Yellow oil, yield: 56%

¹H NMR (400 MHz, CDCl₃): δ = 7.79 (s, 4H), 7.69 (s, 1H), 4.09 (t, *J* = 6.6 Hz, 2H), 4.00 (d, *J* = 5.9 Hz, 2H), 1.79 (s, 3H), 1.62 – 1.55 (m, 2H), 1.35 (dq, *J* = 14.7, 7.4 Hz, 3H), 0.88 (t, *J* = 7.4

Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 170.1$, 167.2, 165.7, 134.5, 131.0, 123.1, 64.8, 43.2, 30.6, 19.0, 16.4, 14.0; HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₂₀N₃O₄⁺: 318.1448; found: 318.1453.

ethyl (E)-(1-((1,3-dioxoisoindolin-2-yl)imino)ethyl)glycinate (3t)

White oil, yield: 69% ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.79 (d, *J* = 5.3 Hz, 4H), 7.67 (s, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.99 (d, *J* = 5.8 Hz, 2H), 1.79 (s, 3H), 1.23 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.0, 167.3, 165.7, 134.5, 131.0,

123.1, 60.8, 55.3, 43.3, 16.4, 14.5; HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₁₄H₁₆N₃O₄⁺: 290.1135; found: 290.1137.

ethyl (E)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-hydroxy-2-phenylpropanoate (4a)

Yellow oil, yield: 70% ¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.03 (s, 1H), 7.93 – 7.86 (m, 4H), 7.57 – 7.53 (m, 2H), 7.44 – 7.34 (m, 3H), 6.90 (s, 1H), 4.25 – 4.14 (m, 2H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 171.2, 164.8, 162.3, 139.6, 135.4, 130.3, 128.6, 128.6, 126.7, 123.9, 79.4, 62.0,

14.3; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₆N₂NaO₅⁺: 375.0951; found: 375.0952.

ethyl (E)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-hydroxy-2-(o-tolyl)propanoate (4b)

White oil, yield: 76% ¹H NMR (400 MHz, DMSO- d_6): $\delta = 9.04$ (s, 1H), 7.95 – 7.86 (m, 4H), 7.47 (d, J = 7.6 Hz, 1H), 7.24 (dt, J = 13.7, 5.0 Hz, 3H), 6.76 (s, 1H), 4.28 – 4.15 (m, 2H), 2.31 (s, 3H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 171.4$, 164.8, 162.5, 138.4, 137.1, 135.4, 132.1, 130.3,

128.5, 127.4, 125.8, 123.9, 80.3, 61.9, 20.4, 14.3; HRMS (ESI): *m*/*z* [M+Na]⁺ calcd for C₂₀H₁₈N₂NaO₅⁺:389.1108; found: 389.1115.

ethyl (E)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-hydroxy-2-(p-tolyl)propanoate (4c)

White oil, yield: 75% ¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.00 (s, 1H), 7.94 – 7.87 (m, 4H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.21 (d, *J* = 8.0 Hz, 2H), 6.78 (s, 1H), 4.18 (dd, *J* = 10.4, 7.1 Hz, 2H), 2.31 (s, 3H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO*d*₆): δ = 171.2, 164.8, 162.5, 137.9, 136.7, 135.4, 130.3,

129.2, 126.5, 123.9, 79.2, 61.9, 21.0, 14.3; HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₀H₁₈NaN₂O₅⁺: 389.1108; found: 389.1093.

ethyl (E)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-hydroxy-2-(p-tolyl)propanoate (4d)

White oil, yield: 57%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.21 (s, 1H), 8.30 – 8.25 (m, 1H), 7.93 (tdd, *J* = 5.2, 4.4, 2.5 Hz, 6H), 7.72 – 7.69 (m, 1H), 7.52 (dt, *J* = 7.1, 2.9 Hz, 3H), 7.10 (s, 1H), 4.22 – 4.08 (m, 2H), 1.09 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz,

DMSO-*d*₆): δ = 171.7, 164.8, 162.4, 136.2, 135.5, 134.4, 131.0, 130.4, 129.7, 129.1, 126.5, 126.2, 125.8, 125.5, 125.2, 124.0, 80.6, 61.9, 14.3; HRMS (ESI): *m*/*z* [M+K]⁺ calcd for C₂₃H₁₈KN₂O₅⁺: 441.0847; found: 441.0832.

ethyl (*E*)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-(2-fluorophenyl)-2hydroxypropanoate (4e)

White oil, yield: 63%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.13 (d, *J* = 1.4 Hz, 1H), 7.92 – 7.85 (m, 4H), 7.65 (td, *J* = 7.7, 1.6 Hz, 1H), 7.46 – 7.40 (m, 1H), 7.29 – 7.20 (m, 2H), 7.12 (s, 1H), 4.21 (qd, *J* = 7.1, 4.0 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.5, 164.8, 160.2, 135.4, 130.9,

130.9, 130.2, 128.4, 128.4, 127.5, 127.4, 124.7, 124.6, 123.9, 116.0, 115.8, 77.4, 62.0, 14.2; ¹⁹F NMR (376 MHz, DMSO- d_6): $\delta = -112.5 - -112.7$ (m); HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₅FN₂NaO₅⁺: 393.0857; found: 393.0865.

ethyl (*E*)-2-(2-chlorophenyl)-3-((1,3-dioxoisoindolin-2-yl)imino)-2hydroxypropanoate (4f)

White oil, yield: 80%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.30 (s, 1H), 7.90 (t, *J* = 5.6 Hz, 4H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.48 – 7.39 (m, 3H), 7.18 (s, H), 4.21 (dd, *J* = 7.0, 4.4 Hz, 2), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.2, 164.8, 160.2, 137.9, 135.4, 132.1, 130.4, 130.3, 130.2, 128.9,

127.4, 123.9, 78.8, 62.0, 14.2; HRMS (ESI): *m*/*z* [M+Na]⁺ calcd for C₁₉H₁₅ClN₂NaO₅⁺: 409.0562; found: 409.0572.

ethyl (*l* iodophenyl)propanoate (4g)

(E)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-hydroxy-2-(2-4g)

White oil, yield: 49%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.39 (s, 1H), 7.94 – 7.86 (m, 5H), 7.69 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.15 – 7.06 (m, 2H), 4.26 – 4.15 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.0, 164.8, 160.5, 142.6, 141.2, 135.5, 130.2, 129.4, 128.1,

124.0, 97.2, 81.2, 62.0, 14.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₅IN₂NaO₅⁺: 500.9918; found: 500.9917.

ethyl

(E)-2-(3-chlorophenyl)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-

hydroxypropanoate (4h)

White oil, yield: 57%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.99 (s, 1H), 7.90 (dq, *J* = 8.9, 4.3 Hz, 4H), 7.58 (s, 1H), 7.46 (dt, *J* = 14.1, 7.1 Hz, 3H), 7.15 (s, 1H), 4.20 (dd, *J* = 13.8, 6.9 Hz, 2H), 1.20 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.6, 164.8, 161.5, 141.9, 135.4, 135.4, 133.4,

130.5, 130.3, 128.6, 125.6, 124.0, 79.1, 62.2, 14.3; HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₅ClN₂NaO₅⁺: 409.0562; found: 409.0571.

ethyl (*E*)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-(4-fluorophenyl)-2hydroxypropanoate (4i)

White oil, yield: 59% ¹H NMR (400 MHz, DMSO-*d*₆): δ = 8.99 (s, 1H), 7.93 – 7.86 (m, 4H), 7.58 (dd, *J* = 8.7, 5.5 Hz, 2H), 7.25 (t, *J* = 8.9 Hz, 2H), 7.02 (s, 1H), 4.19 (qd, *J* = 7.2, 3.6 Hz, 2H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 164.8, 162.0, 135.7, 135.4, 130.3, 129.0, 128.9, 123.9,

115.5, 115.3, 79.0, 62.1, 14.3; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ = -114.3; HRMS (ESI): *m/z* [M+Na]⁺ calcd for C₁₉H₁₅FN₂NaO₅⁺: 393.0857; found: 393.0865.

ethyl (*E*)-2-(4-bromophenyl)-3-((1,3-dioxoisoindolin-2-yl)imino)-2hydroxypropanoate (4j)

White oil, yield: 53%

¹H NMR (400 MHz, DMSO- d_6): $\delta = 8.98$ (s, 1H), 7.92 – 7.86 (m, 4H), 7.62 (d, J = 8.5 Hz, 2H), 7.49 (d, J = 8.6 Hz, 2H), 7.08 (s, 1H), 4.25 – 4.15 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 170.7$, 164.8, 161.6, 138.9, 135.4, 131.5, 130.3, 129.0, 123.9, 122.0, 79.1, 62.1, 14.3; HRMS (ESI): m/z [M+Na]⁺ calcd for

C₁₉H₁₅BrN₂NaO₅⁺: 453.0057; found: 453.0050.

White oil, yield: 72%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.29 (s, 1H), 7.92 – 7.87 (m, 4H), 7.79 (d, *J* = 8.5 Hz, 1H), 7.63 (d, *J* = 2.1 Hz, 1H), 7.52 (dd, *J* = 8.5, 2.2 Hz, 1H), 7.39 (s, 1H), 4.21 (dd, *J* = 7.1, 5.2 Hz, 2H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 169.9, 164.8, 159.5, 137.2,

135.5, 134.0, 130.3, 130.2, 129.8, 127.5, 125.2, 124.0, 78.5, 62.1, 14.2; HRMS (ESI): m/z [M+NH₄]⁺ calcd for C₁₉H₁₈Cl₂N₃O₅⁺: 438.0618; found: 438.0610.

benzyl (E)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-hydroxy-2-phenylpropanoate (4l)

White oil, yield: 42%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.07 (d, *J* = 0.6 Hz, 1H), 7.95 – 7.87 (m, 4H), 7.55 (d, *J* = 7.5 Hz, 2H), 7.41 – 7.31 (m, 8H), 7.04 (s, 1H), 5.22 (s, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 171.1, 164.8, 162.2, 139.5, 136.5, 135.5, 130.3, 128.7, 128.7, 128.4, 128.0, 126.7,

124.0, 79.6, 67.2; HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₄H₁₈N₂NaO₅⁺: 437.1108; found: 437.1131.

allyl (E)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-hydroxy-2-phenylpropanoate (4m)

White oil, yield: 60%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.07 (s, 1H), 7.95 - 7.88 (m, 4H), 7.60 - 7.55 (m, 2H), 7.45 - 7.36 (m, 3H), 7.01 (s, 1H), 5.96 - 5.86 (m, 1H), 5.27 - 5.15 (m, 2H), 4.68 (ddd, *J* = 5.1, 2.8, 1.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.9, 164.8, 162.1, 139.6, 135.4, 132.5,

130.3, 129.2, 128.7, 126.7, 124.0, 118.1, 79.5, 66.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₀H₁₆N₂NaO₅⁺: 387.0951; found: 387.0961.

isopentyl (*E*)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-hydroxy-2-phenylpropanoate (4n)

White oil, yield: 57%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.03 (s, 1H), 8.15 – 8.04 (m, 1H), 7.90 (d, *J* = 5.2 Hz, 2H), 7.83 (s, 2H), 7.55 (d, *J* = 7.1 Hz, 2H), 7.38 (dd, *J* = 17.3, 7.2 Hz, 2H), 6.90 (s, 1H), 4.16 (d, *J* = 6.2 Hz, 2H), 1.55 (dd, *J* = 13.2, 6.6 Hz, 1H), 1.46 (dd, *J* = 13.2,

6.6 Hz, 2H), 0.81 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, DMSO- d_6): $\delta = 171.2$, 164.8, 162.4, 136.7, 135.5, 130.3, 128.6, 126.7, 125.2, 124.0, 79.4, 64.3, 37.1, 24.8, 22.6; HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₂H₂₂N₂NaO₅⁺: 417.1421; found: 417.1434.

isobutyl (*E*)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-hydroxy-2-phenylpropanoate (40)

White oil, yield: 64%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.06 (s, 1H), 7.92 - 7.82 (m, 4H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.44 - 7.34 (m, 3H), 6.91 (s, 1H), 3.97 - 3.88 (m, 2H), 1.87 (dt, *J* = 13.1, 6.5 Hz, 1H), 0.81 (d, *J* = 6.5 Hz, 6H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 171.1, 164.8, 162.3, 139.7, 135.4,

134.7, 130.3, 128.6, 126.6, 123.9, 79.4, 71.5, 27.6, 19.1; HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₁H₂₀N₂NaO₅⁺: 409.0562; found: 409.0572.

ethyl (*E*)-3-((1,3-dioxoisoindolin-2-yl)imino)-2-hydroxy-2-(3-(trifluoromethyl)phenyl)propanoate (4q)

White oil, yield: 30%

¹H NMR (400 MHz, DMSO-*d*₆): δ = 9.01 (s, 1H), 8.09 (dd, J = 23.3, 3.0 Hz, 1H), 7.88 (dd, J = 15.5, 5.7 Hz, 5H), 7.75 (d, J = 7.5 Hz, 1H), 7.69 (d, J = 7.8 Hz, 1H), 7.32 (s, 1H), 4.27 – 4.17 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 170.6, 164.7, 161.5, 140.7, 136.7,

135.4, 131.2, 130.3, 129.7, 129.2, 125.4, 125.4, 125.2, 124.0, 123.3, 79.1, 62.3, 14.2; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ = -60.8 – -61.3 (m); HRMS (ESI): *m*/*z* [M+H]⁺ calcd for C₂₀H₁₆F₃N₂O₅⁺: 421.1006; found: 421.1024.

ethyl (*E*)-2-(*N*'-(1,3-dioxoisoindolin-2-yl)acetimidamido-2,2,2-*d*₃)-2-phenylacetate (3a')

Yellow oil, yield: 74%

¹H NMR (400 MHz, DMSO- d_6): δ = 7.97 (d, J = 6.7 Hz, 1H), 7.80 (s, 4H), 7.49 (dd, J = 8.1, 1.3 Hz, 2H), 7.41 (ddt, J = 9.7, 5.6, 2.2 Hz, 3H), 5.48 (d, J = 6.7 Hz, 1H), 4.13 (ddd, J = 25.8, 10.8, 7.1 Hz, 2H), 1.17 (t, J = 7.1 Hz,

3H).

Yellow oil, yield: 72% ¹H NMR (400 MHz, DMSO- d_6): δ = 7.89 (qd, J = 6.5, 4.3 Hz, 4H), 7.58 – 7.54 (m, 2H), 7.42 (dd, J = 10.0, 4.8 Hz, 2H), 7.38 – 7.34 (m, 1H), 6.93 (s, 1H), 4.25 – 4.15 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H).

6. NMR Spectra of Compounds

¹³C NMR Spectrum of Compound **3a** (100 MHz, DMSO- d_6).

¹³C NMR Spectrum of Compound **3b** (100 MHz, DMSO-*d*₆)

¹⁹F NMR Spectrum of Compound **3c** (376 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **3d** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **3e** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **3f** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **3g** (100 MHz, DMSO-*d*₆)

¹⁹F NMR Spectrum of Compound **3h** (376 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **3i** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **3k** (100 MHz, DMSO-*d*₆)

S26

¹³C NMR Spectrum of Compound **3m** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **3n** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **3p** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **3q** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound 3r (100 MHz, DMSO- d_6)

¹³C NMR Spectrum of Compound **3s** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **3t** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **4a** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **4b** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **4c** (100 MHz, DMSO-*d*₆)

¹⁹F NMR Spectrum of Compound 4e (376 MHz, DMSO- d_6)

¹³C NMR Spectrum of Compound **4f** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound 4g (100 MHz, DMSO-*d*₆)

¹⁹F NMR Spectrum of Compound **4i** (376 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound 4j (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound 4k (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **4I** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **4m** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **4n** (100 MHz, DMSO-*d*₆)

¹³C NMR Spectrum of Compound **40** (100 MHz, DMSO-*d*₆)

¹⁹F NMR Spectrum of Compound **4i** (376 MHz, DMSO-*d*₆)

¹H NMR Spectrum of Compound **4a'** (400 MHz, DMSO-*d*₆)

7. X-ray Diffraction Parameters and Data of 3n and 4k

Wavelength=0.71073 Bond precision: C-C = 0.0045 A

Cell:	a=11.74000 alpha=90	b=19.00700 beta=95.3100	c=8.97600 gamma=90
Temperature:	296 K		
	Calculated	Reported	
Volume	1994.329	1994	
Space group	P 21/c	P 21/c	
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C20 H17 C12 N3 O4	?	
Sum formula	C20 H17 C12 N3 O4	C20 H17 C12	N3 04
Mr	434.27	434.26	
Dx,g cm-3	1.446	1.446	
Z	4	4	
Mu (mm-1)	0.358	0.358	
F000	896.0	896.0	
F000'	897.56		
h,k,lmax	13,22,10	13,22,10	
Nref	3540	3536	
Tmin,Tmax	0.931,0.931	0.864,0.864	
Tmin'	0.931		
Correction metho	od= # Reported T Limi	ts: Tmin=0.864 Tmax	=0.864
ADSCOLL = MULII-	-SCAN		

Data completeness= 0.999 Theta(max) = 25.064

R(reflections) = 0.0644(2265)

S = 1.138

Npar= 264

wR2(reflections) = 0.1288(3536)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level C PLAT141_ALERT_4_C s.u. on a - Axis Small or Missing PLAT142_ALERT_4_C s.u. on b - Axis Small or Missing 0.00000 Ang. 0.00000 Ang. PLAT143_ALERT_4_C s.u. on c - Axis Small or Missing 0.00000 Ang. PLAT145_ALERT_4_C s.u. on beta Small or Missing PLAT151_ALERT_1_C No s.u. (esd) Given on Volume 0.0000 Degree Please Do ! PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds 0.0045 Ang. Alert level G PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 1 Report PLAT767_ALERT_4_G INS Embedded LIST 6 Instruction Should be LIST 4 Please Check PLAT793_ALERT_4_G Model has Chirality at C7 (Centro SPGR) S Verify PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Please Do ! PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 2.0 Low PLAT965_ALERT_2_G The SHELXL WEIGHT Optimisation has not Converged Please Check 0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 6 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Figure S1 The single crystal analysis for 3n (CCDC number: 2205769)

Identification code	1_a	
Empirical formula	C20 H17 Cl2 N3 O4	
Formula weight	434.26	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 11.740 Å	<i>α</i> = 90°.
	b = 19.007 Å	β= 95.31°.
	c = 8.976 Å	$\gamma = 90^{\circ}.$
Volume	1994.2 Å ³	
Z	4	
Density (calculated)	$1.446 \ Mg/m^3$	
Absorption coefficient	0.358 mm ⁻¹	
F(000)	896	
Crystal size	0.200 x 0.200 x 0.200 mm ³	
Theta range for data collection	2.143 to 25.064°.	
Index ranges	0<=h<=13, -22<=k<=22, -1	0<=1<=10
	S53	

Table 1-1. Crystal data and structure refinement for 1_a.

Reflections collected	6914
Independent reflections	3536 [R(int) = 0.0453]
Completeness to theta = 25.064°	99.9 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3536 / 0 / 264
Goodness-of-fit on F ²	1.138
Final R indices [I>2sigma(I)]	R1 = 0.0644, wR2 = 0.1111
R indices (all data)	R1 = 0.1256, wR2 = 0.1288
Extinction coefficient	n/a
Largest diff. peak and hole	0.185 and -0.226 e.Å ⁻³

Table 1-2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$)

	X	у	Z	U(eq)
C(7)	5042(2)	4014(1)	2247(3)	40(1)
C(15)	8943(2)	5153(2)	6757(3)	43(1)
C(11)	5746(3)	5100(2)	3463(3)	41(1)
C(8)	5861(2)	3908(2)	1047(3)	43(1)
C(6)	3885(2)	3699(1)	1729(3)	37(1)
C(5)	3211(3)	4014(2)	575(3)	48(1)
C(14)	9116(3)	5651(2)	5685(3)	44(1)
C(13)	8169(3)	5606(2)	4492(4)	47(1)
C(20)	7873(3)	4775(2)	6294(3)	47(1)
C(1)	3450(3)	3099(2)	2353(3)	45(1)
C(12)	5522(3)	5865(2)	3674(4)	55(1)
C(16)	9737(3)	5046(2)	7950(3)	54(1)
C(3)	1741(3)	3181(2)	769(4)	53(1)
C(4)	2137(3)	3767(2)	95(3)	54(1)
C(2)	2380(3)	2840(2)	1886(4)	55(1)
C(19)	10096(3)	6054(2)	5776(4)	57(1)
C(17)	10720(3)	5454(2)	8054(4)	61(1)
C(18)	10896(3)	5948(2)	6977(4)	62(1)
C(9)	7008(3)	3079(2)	-80(4)	68(1)
C(10)	7413(3)	2345(2)	219(5)	93(1)
Cl(1)	382(1)	2875(1)	165(1)	96(1)
Cl(2)	4250(1)	2640(1)	3763(1)	69(1)
N(1)	4925(2)	4748(1)	2600(3)	44(1)
N(2)	6601(2)	4729(1)	4020(3)	46(1)
N(3)	7431(2)	5096(1)	4956(3)	45(1)
O(1)	6270(2)	3259(1)	1075(2)	57(1)
O(2)	6093(2)	4344(1)	170(3)	64(1)
O(3)	7449(2)	4286(1)	6887(3)	66(1)
O(4)	8033(2)	5929(1)	3332(3)	64(1)

for 1_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(7)-N(1)	1.440(3)
C(7)-C(6)	1.517(4)
C(7)-C(8)	1.522(4)
C(7)-H(7)	0.9800
C(15)-C(16)	1.368(4)
C(15)-C(14)	1.379(4)
C(15)-C(20)	1.473(4)
C(11)-N(2)	1.288(3)
C(11)-N(1)	1.357(3)
C(11)-C(12)	1.493(4)
C(8)-O(2)	1.192(3)
C(8)-O(1)	1.323(3)
C(6)-C(5)	1.381(4)
C(6)-C(1)	1.388(4)
C(5)-C(4)	1.377(4)
C(5)-H(5)	0.9300
C(14)-C(19)	1.378(4)
C(14)-C(13)	1.472(4)
C(13)-O(4)	1.206(3)
C(13)-N(3)	1.390(4)
C(20)-O(3)	1.201(3)
C(20)-N(3)	1.403(4)
C(1)-C(2)	1.377(4)
C(1)-Cl(2)	1.740(3)
C(12)-H(12A)	0.9600
C(12)-H(12B)	0.9600
C(12)-H(12C)	0.9600
C(16)-C(17)	1.386(4)
C(16)-H(16)	0.9300
C(3)-C(2)	1.361(4)
C(3)-C(4)	1.368(4)
C(3)-Cl(1)	1.737(3)
C(4)-H(4)	0.9300
C(2)-H(2)	0.9300
C(19)-C(18)	1.377(4)
C(19)-H(19)	0.9300

Table 1-3. Bond lengths [Å] and angles [°] for 1_a.

C(17)-C(18)	1.378(4)
C(17)-H(17)	0.9300
C(18)-H(18)	0.9300
C(9)-O(1)	1.452(4)
C(9)-C(10)	1.489(4)
C(9)-H(9A)	0.9700
C(9)-H(9B)	0.9700
C(10)-H(10A)	0.9600
C(10)-H(10B)	0.9600
C(10)-H(10C)	0.9600
N(1)-H(1)	0.8600
N(2)-N(3)	1.411(3)
N(1)-C(7)-C(6)	110.3(2)
N(1)-C(7)-C(8)	111.3(2)
C(6)-C(7)-C(8)	109.7(2)
N(1)-C(7)-H(7)	108.5
C(6)-C(7)-H(7)	108.5
C(8)-C(7)-H(7)	108.5
C(16)-C(15)-C(14)	121.0(3)
C(16)-C(15)-C(20)	130.5(3)
C(14)-C(15)-C(20)	108.3(3)
N(2)-C(11)-N(1)	116.0(3)
N(2)-C(11)-C(12)	128.6(3)
N(1)-C(11)-C(12)	115.4(3)
O(2)-C(8)-O(1)	123.8(3)
O(2)-C(8)-C(7)	125.0(3)
O(1)-C(8)-C(7)	111.2(3)
C(5)-C(6)-C(1)	116.9(3)
C(5)-C(6)-C(7)	119.6(3)
C(1)-C(6)-C(7)	123.5(2)
C(4)-C(5)-C(6)	122.1(3)
C(4)-C(5)-H(5)	119.0
C(6)-C(5)-H(5)	119.0
C(19)-C(14)-C(15)	121.1(3)
C(19)-C(14)-C(13)	130.2(3)
C(15)-C(14)-C(13)	108.5(3)
O(4)-C(13)-N(3)	125.2(3)

O(4)-C(13)-C(14)	129.0(3)
N(3)-C(13)-C(14)	105.8(3)
O(3)-C(20)-N(3)	125.4(3)
O(3)-C(20)-C(15)	129.0(3)
N(3)-C(20)-C(15)	105.6(3)
C(2)-C(1)-C(6)	122.0(3)
C(2)-C(1)-Cl(2)	117.2(2)
C(6)-C(1)-Cl(2)	120.8(2)
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(15)-C(16)-C(17)	118.2(3)
C(15)-C(16)-H(16)	120.9
C(17)-C(16)-H(16)	120.9
C(2)-C(3)-C(4)	121.8(3)
C(2)-C(3)-Cl(1)	119.9(3)
C(4)-C(3)-Cl(1)	118.3(3)
C(3)-C(4)-C(5)	118.6(3)
C(3)-C(4)-H(4)	120.7
C(5)-C(4)-H(4)	120.7
C(3)-C(2)-C(1)	118.6(3)
C(3)-C(2)-H(2)	120.7
C(1)-C(2)-H(2)	120.7
C(18)-C(19)-C(14)	118.1(3)
C(18)-C(19)-H(19)	121.0
C(14)-C(19)-H(19)	121.0
C(18)-C(17)-C(16)	120.8(3)
C(18)-C(17)-H(17)	119.6
C(16)-C(17)-H(17)	119.6
C(19)-C(18)-C(17)	120.9(3)
C(19)-C(18)-H(18)	119.5
C(17)-C(18)-H(18)	119.5
O(1)-C(9)-C(10)	107.1(3)
O(1)-C(9)-H(9A)	110.3
C(10)-C(9)-H(9A)	110.3

O(1)-C(9)-H(9B)	110.3
C(10)-C(9)-H(9B)	110.3
H(9A)-C(9)-H(9B)	108.5
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(11)-N(1)-C(7)	121.7(2)
C(11)-N(1)-H(1)	119.1
C(7)-N(1)-H(1)	119.1
C(11)-N(2)-N(3)	115.5(2)
C(13)-N(3)-C(20)	111.6(2)
C(13)-N(3)-N(2)	125.6(2)
C(20)-N(3)-N(2)	118.4(2)
C(8)-O(1)-C(9)	116.5(2)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(7)	40(2)	36(2)	42(2)	2(1)	0(1)	1(1)
C(15)	41(2)	46(2)	42(2)	-7(2)	1(2)	-1(2)
C(11)	46(2)	37(2)	40(2)	-3(2)	9(2)	-3(2)
C(8)	40(2)	35(2)	52(2)	-1(2)	-3(2)	0(2)
C(6)	40(2)	32(2)	40(2)	-3(1)	5(1)	2(1)
C(5)	50(2)	43(2)	50(2)	3(2)	-1(2)	-6(2)
C(14)	45(2)	38(2)	49(2)	-4(2)	7(2)	-2(2)
C(13)	45(2)	46(2)	48(2)	1(2)	2(2)	-2(2)
C(20)	44(2)	46(2)	50(2)	1(2)	5(2)	-3(2)
C(1)	53(2)	36(2)	45(2)	1(2)	4(2)	-3(2)
C(12)	54(2)	42(2)	68(2)	-6(2)	4(2)	1(2)
C(16)	53(2)	56(2)	54(2)	0(2)	4(2)	-2(2)
C(3)	39(2)	51(2)	69(2)	-15(2)	1(2)	-7(2)
C(4)	53(2)	53(2)	55(2)	-3(2)	-9(2)	3(2)
C(2)	60(2)	44(2)	63(2)	0(2)	10(2)	-14(2)
C(19)	60(2)	41(2)	69(2)	-1(2)	6(2)	-9(2)
C(17)	57(2)	65(2)	59(2)	-4(2)	-8(2)	-4(2)
C(18)	47(2)	56(2)	80(3)	-7(2)	-6(2)	-11(2)
C(9)	59(2)	64(2)	85(3)	-15(2)	21(2)	3(2)
C(10)	72(3)	66(3)	142(4)	-24(3)	12(3)	20(2)
Cl(1)	56(1)	89(1)	140(1)	-19(1)	-11(1)	-23(1)
Cl(2)	90(1)	46(1)	68(1)	18(1)	-9(1)	-7(1)
N(1)	38(1)	35(2)	56(2)	-6(1)	-6(1)	4(1)
N(2)	44(2)	44(2)	49(2)	-5(1)	-4(1)	-5(1)
N(3)	44(2)	44(2)	44(2)	-2(1)	-2(1)	-6(1)
O(1)	60(1)	39(1)	76(2)	-1(1)	23(1)	9(1)
O(2)	73(2)	53(2)	71(2)	12(1)	28(1)	4(1)
O(3)	57(2)	68(2)	72(2)	18(1)	-1(1)	-15(1)
O(4)	63(2)	71(2)	58(1)	16(1)	1(1)	-9(1)

Table 1-4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 1_a.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	X	у	Z	U(eq)
H(7)	5350	3767	3154	47
H(5)	3491	4406	107	57
H(12A)	5906	6019	4608	82
H(12B)	4714	5942	3679	82
H(12C)	5803	6127	2869	82
H(16)	9621	4708	8671	65
H(4)	1690	3993	-671	65
H(2)	2101	2440	2326	66
H(19)	10214	6387	5047	68
H(17)	11268	5393	8861	74
H(18)	11563	6215	7062	74
H(9A)	7653	3399	-49	82
H(9B)	6589	3109	-1061	82
H(10A)	7841	2324	1182	140
H(10B)	7893	2204	-538	140
H(10C)	6767	2035	204	140
H(1)	4318	4969	2254	52

Table 1-5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 1_a.

Table 1-6.	Torsion angles [°] for 1_a.
------------	-----------------------------

N(1)-C(7)-C(8)-O(2)	-22.6(4)
C(6)-C(7)-C(8)-O(2)	99.8(3)
N(1)-C(7)-C(8)-O(1)	158.8(2)
C(6)-C(7)-C(8)-O(1)	-78.8(3)
N(1)-C(7)-C(6)-C(5)	53.3(3)
C(8)-C(7)-C(6)-C(5)	-69.7(3)
N(1)-C(7)-C(6)-C(1)	-126.8(3)
C(8)-C(7)-C(6)-C(1)	110.2(3)
C(1)-C(6)-C(5)-C(4)	2.5(4)
C(7)-C(6)-C(5)-C(4)	-177.6(3)
C(16)-C(15)-C(14)-C(19)	0.3(5)
C(20)-C(15)-C(14)-C(19)	-175.7(3)
C(16)-C(15)-C(14)-C(13)	175.5(3)
C(20)-C(15)-C(14)-C(13)	-0.5(3)
C(19)-C(14)-C(13)-O(4)	-1.8(6)
C(15)-C(14)-C(13)-O(4)	-176.4(3)
C(19)-C(14)-C(13)-N(3)	177.6(3)
C(15)-C(14)-C(13)-N(3)	3.0(3)
C(16)-C(15)-C(20)-O(3)	1.0(6)
C(14)-C(15)-C(20)-O(3)	176.6(3)
C(16)-C(15)-C(20)-N(3)	-177.7(3)
C(14)-C(15)-C(20)-N(3)	-2.1(3)
C(5)-C(6)-C(1)-C(2)	-2.2(4)
C(7)-C(6)-C(1)-C(2)	178.0(3)
C(5)-C(6)-C(1)-Cl(2)	177.4(2)
C(7)-C(6)-C(1)-Cl(2)	-2.5(4)
C(14)-C(15)-C(16)-C(17)	0.2(5)
C(20)-C(15)-C(16)-C(17)	175.3(3)
C(2)-C(3)-C(4)-C(5)	-0.3(5)
Cl(1)-C(3)-C(4)-C(5)	179.6(2)
C(6)-C(5)-C(4)-C(3)	-1.3(5)
C(4)-C(3)-C(2)-C(1)	0.6(5)
Cl(1)-C(3)-C(2)-C(1)	-179.3(2)
C(6)-C(1)-C(2)-C(3)	0.7(5)
Cl(2)-C(1)-C(2)-C(3)	-179.0(2)
C(15)-C(14)-C(19)-C(18)	-0.5(5)

C(13)-C(14)-C(19)-C(18)	-174.5(3)
C(15)-C(16)-C(17)-C(18)	-0.6(5)
C(14)-C(19)-C(18)-C(17)	0.1(5)
C(16)-C(17)-C(18)-C(19)	0.5(5)
N(2)-C(11)-N(1)-C(7)	-4.0(4)
C(12)-C(11)-N(1)-C(7)	177.4(3)
C(6)-C(7)-N(1)-C(11)	161.3(2)
C(8)-C(7)-N(1)-C(11)	-76.6(3)
N(1)-C(11)-N(2)-N(3)	-178.0(2)
C(12)-C(11)-N(2)-N(3)	0.3(4)
O(4)-C(13)-N(3)-C(20)	175.0(3)
C(14)-C(13)-N(3)-C(20)	-4.4(3)
O(4)-C(13)-N(3)-N(2)	19.1(5)
C(14)-C(13)-N(3)-N(2)	-160.3(2)
O(3)-C(20)-N(3)-C(13)	-174.6(3)
C(15)-C(20)-N(3)-C(13)	4.1(3)
O(3)-C(20)-N(3)-N(2)	-16.8(4)
C(15)-C(20)-N(3)-N(2)	161.9(2)
C(11)-N(2)-N(3)-C(13)	-69.0(4)
C(11)-N(2)-N(3)-C(20)	136.7(3)
O(2)-C(8)-O(1)-C(9)	-2.4(4)
C(7)-C(8)-O(1)-C(9)	176.3(2)
C(10)-C(9)-O(1)-C(8)	177.0(3)

Symmetry transformations used to generate equivalent atoms:

Table 1-7. Hydrogen bonds for 1_a [Å and °].

	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
--	------	--------	-------	-------	--------

Bond precision: C-C = 0.0119 A

Cell:	a=13.1812(18) alpha=90	b=14.144(2) beta=90	c=20.391(3) gamma=90
Temperature:	296 K		
	Calculated	Reported	
Volume	3801.6(9)	3801.6(9)	
Space group	P 21 21 21	P 21 21 2	1
Hall group	P 2ac 2ab	P 2ac 2ab	
Moiety formula	C19 H14 C12 N2 O5	?	
Sum formula	C19 H14 C12 N2 O5	C19 H14 C	12 N2 O5
Mr	421.22	421.22	
Dx,g cm-3	1.472	1.472	
Z	8	8	
Mu (mm-1)	0.376	0.376	
F000	1728.0	1728.0	
F000'	1731.17		
h,k,lmax	15,16,24	15,16,24	
Nref	6682[3738]	6675	
Tmin, Tmax	0.928,0.928	0.864,0.8	64
Tmin'	0.928		

Correction method= # Reported T Limits: Tmin=0.864 Tmax=0.864 AbsCorr = MULTI-SCAN

Data completeness= 1.79/1.00 Theta(max) = 24.998

R(reflections) = 0.0690(2768)

S = 0.970

Npar= 477

wR2(reflections)= 0.1926(6675)

Alert level B	0.01101	
PLAT340_ALERT_3_B Low Bond Precision on C-C Bonds	0.01191	Ang.
Author Response: This is caused by the poor diffraction of the sample.		
Alert level C		
RINTA01_ALERT_3_C The value of Rint is greater than 0.12		
PLAT026_ALERT_3_C Ratio Observed / Unique Reflections (too) Low	418	Check
LAT234_ALERT_4_C Large Hirshfeld Difference N4C19 .	0.20	Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference N4C26 .	0.16	Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C23C24 .	0.17	Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C25C26 .	0.16	Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C29C30 .	0.17	Ang.
PLAT234_ALERT_4_C Large Hirshfeld Difference C9C10 .	0.19	Ang.
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of	C31	Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of	C34	Check
Alant land g		
ALEFT LEVEL G PLAT002 ALERT 2 G Number of Distance or Angle Restraints on AtSite	5	Note
PLAT003 ALERT 2 G Number of Uiso or Uii Restrained non-H Atoms	5	Report
PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms	2	Report
PLAT020_ALERT_3_G The Value of Rint is Greater Than 0.12	0.125	Report
PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records	2	Report
PLAT177_ALERT_4_G The CIF-Embedded .res File Contains DELU Records	1	Report
PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records	1	Report
PLAT301_ALERT_3_G Main Residue Disorder	78	Note
<pre>PLAT398_ALERT_2_G Deviating C=O=C Angle From 120 for O10 .</pre>	107.1	Degree
PLAT431_ALERT_2_G Short Inter HLA Contact Cl206 .	3.02	Ang.
x,y,z -	1_555 Chec	:k
PLAT767_ALERT_4_G INS Embedded LIST 6 Instruction Should be LIST 4	Please	Check
LAT/91_ALERT_4_G Model has Chirality at C9 (Sohnke SpGr)	S	verify
(-, -)	R	verify
PLAT791_ALERT_4_G Model has Chirality at C27 (Sohnke SpGr)		MOTO
PLAT791_ALERT_4_G Model has Chirality at C27 (Sohnke SpGr) PLAT860_ALERT_3_G Number of Least-Squares Restraints	Dieses	Do 1

1 ALERT level B - A potentially serious problem, consider carefully 10 ALERT level C - Check. Ensure it is not caused by an omission or oversight 16 ALERT level G - General information/check it is not something unexpected

1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

Figure S2 The single crystal analysis for 4k (CCDC number: 2205670)

Table 2-1. Crystal data and structure refinement for 1_a.

Identification code	1_a	
Empirical formula	C19 H14 Cl2 N2 O5	
Formula weight	421.22	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P212121	
Unit cell dimensions	a = 13.1812(18) Å	α= 90°.
	b = 14.144(2) Å	β= 90°.
	c = 20.391(3) Å	$\gamma = 90^{\circ}.$
Volume	3801.6(9) Å ³	
Z	8	
Density (calculated)	1.472 Mg/m^3	
Absorption coefficient	0.376 mm ⁻¹	
F(000)	1728	
Crystal size	$0.200 \text{ x} \ 0.200 \text{ x} \ 0.200 \text{ mm}^3$	

2.112 to 24.998°.
-13<=h<=15, -16<=k<=16, -20<=l<=24
32402
6675 [R(int) = 0.1249]
99.9 %
Semi-empirical from equivalents
Full-matrix least-squares on F ²
6675 / 58 / 477
0.970
R1 = 0.0690, wR2 = 0.1484
R1 = 0.2151, wR2 = 0.1926
0.05(6)
n/a
0.223 and -0.245 e.Å ⁻³

	Х	у	Z	U(eq)
 C(1)	2165(9)	6066(8)	9109(5)	72(3)
C(2)	2861(5)	6675(4)	9476(4)	66(3)
C(3)	2745(5)	7142(5)	10071(4)	75(3)
C(4)	3533(7)	7689(5)	10319(3)	83(3)
C(5)	4435(6)	7770(5)	9971(5)	89(4)
C(6)	4551(5)	7303(6)	9376(4)	82(3)
C(7)	3764(6)	6755(5)	9129(3)	67(3)
C(8)	3697(8)	6181(7)	8533(5)	65(3)
C(9)	2248(8)	4141(8)	7191(5)	74(3)
C(10)	2038(6)	4569(4)	6517(3)	64(3)
C(15)	2823(4)	4872(5)	6113(4)	67(3)
C(14)	2605(5)	5293(5)	5513(3)	72(3)
C(14)	1603(6)	5275(3) 5410(4)	5318(3)	72(3)
C(13)	818(4)	5107(5)	5722(4)	82(3)
C(12)	1036(5)	A687(5)	6322(4)	82(3) 76(3)
C(16)	2017(10)	4007(3)	0322(3)	70(3) 87(4)
C(10)	2917(10)	5240(8)	7140(7)	87(4)
C(17)	4112(11)	2520(10)	//21(/) 9272(6)	121(5)
C(18)	4513(12)	2204(11)	83/3(6)	139(6)
C(19)	6820(9)	3826(8)	6867(6)	79(3)
C(20)	7479(5)	3189(5)	7211(4)	70(3)
C(21)	7363(6)	2762(6)	7821(4)	86(3)
C(22)	8130(8)	2193(5)	8071(3)	87(3)
C(23)	9014(6)	2050(5)	7712(5)	97(4)
C(24)	9130(5)	2476(6)	7103(4)	86(3)
C(25)	8363(6)	3046(5)	6852(3)	68(3)
C(26)	8308(9)	3585(7)	6243(6)	70(3)
C(27)	6955(9)	5683(8)	4932(5)	73(3)
C(28)	6862(6)	5286(4)	4231(3)	65(3)
C(33)	7713(4)	5129(5)	3843(4)	68(3)
C(32)	7603(5)	4780(5)	3210(3)	76(3)
C(31)	6641(6)	4587(4)	2965(3)	69(3)
C(30)	5790(5)	4744(5)	3352(4)	81(3)
C(29)	5901(5)	5094(5)	3985(3)	73(3)

Table 2-2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 1_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(34)	7577(11)	6616(9)	4922(7)	96(4)
C(35A)	9120(20)	7350(20)	5440(20)	123(6)
C(36A)	8750(40)	7910(20)	5999(16)	126(8)
C(36B)	9440(20)	7510(20)	5958(14)	121(7)
C(35B)	8690(20)	7601(15)	5425(16)	125(5)
Cl(1)	1330(2)	5905(2)	4574(1)	96(1)
Cl(2)	4075(2)	4699(2)	6305(1)	90(1)
Cl(3)	6524(3)	4203(3)	2164(1)	108(1)
Cl(4)	8912(2)	5342(3)	4106(2)	103(1)
N(1)	2723(7)	5794(6)	8549(4)	63(2)
N(2)	2276(6)	5125(6)	8135(5)	69(2)
C(38)	2767(8)	4890(7)	7631(5)	71(3)
N(4)	7343(6)	4033(6)	6266(4)	65(2)
N(5)	6945(6)	4685(6)	5856(5)	72(2)
C(37)	7439(8)	4951(7)	5355(5)	69(3)
O(1)	1329(6)	5800(6)	9238(4)	90(2)
O(2)	4308(6)	6061(6)	8116(4)	95(3)
O(3)	1340(5)	3826(5)	7470(3)	83(2)
O(4)	2886(8)	2718(6)	6709(4)	126(4)
O(5)	3462(6)	3147(5)	7686(4)	90(2)
O(6)	5995(6)	4105(7)	6996(4)	106(3)
O(7)	8913(5)	3650(5)	5813(4)	88(2)
O(8)	5985(7)	5917(6)	5163(4)	105(3)
O(9)	7467(9)	7202(6)	4520(5)	140(4)
O(10)	8214(7)	6646(5)	5426(5)	127(3)

C(1)-O(1)	1.193(12)
C(1)-N(1)	1.412(12)
C(1)-C(2)	1.464(12)
C(2)-C(3)	1.3900
C(2)-C(7)	1.3900
C(3)-C(4)	1.3900
C(3)-H(3)	0.9300
C(4)-C(5)	1.3900
C(4)-H(4)	0.9300
C(5)-C(6)	1.3900
C(5)-H(5)	0.9300
C(6)-C(7)	1.3900
C(6)-H(6)	0.9300
C(7)-C(8)	1.465(12)
C(8)-O(2)	1.182(10)
C(8)-N(1)	1.396(13)
C(9)-O(3)	1.397(11)
C(9)-C(10)	1.527(11)
C(9)-C(38)	1.547(13)
C(9)-C(16)	1.552(15)
C(10)-C(15)	1.3900
C(10)-C(11)	1.3900
C(15)-C(14)	1.3900
C(15)-Cl(2)	1.714(6)
C(14)-C(13)	1.3900
C(14)-H(14)	0.9300
C(13)-C(12)	1.3900
C(13)-Cl(1)	1.708(6)
C(12)-C(11)	1.3900
C(12)-H(12)	0.9300
C(11)-H(11)	0.9300
C(16)-O(4)	1.156(12)
C(16)-O(5)	1.322(13)
C(17)-C(18)	1.440(15)
C(17)-O(5)	1.451(13)
C(17)-H(17A)	0.9700

Table 2-3. Bond lengths [Å] and angles $[\circ]$ for 1_a.

C(17)-H(17B)	0.9700
C(18)-H(18A)	0.9600
C(18)-H(18B)	0.9600
C(18)-H(18C)	0.9600
C(19)-O(6)	1.186(12)
C(19)-C(20)	1.436(12)
C(19)-N(4)	1.436(13)
C(20)-C(21)	1.3900
C(20)-C(25)	1.3900
C(21)-C(22)	1.3900
C(21)-H(21)	0.9300
C(22)-C(23)	1.3900
C(22)-H(22)	0.9300
C(23)-C(24)	1.3900
C(23)-H(23)	0.9300
C(24)-C(25)	1.3900
C(24)-H(24)	0.9300
C(25)-C(26)	1.459(12)
C(26)-O(7)	1.190(12)
C(26)-N(4)	1.422(13)
C(27)-O(8)	1.402(12)
C(27)-C(37)	1.490(13)
C(27)-C(28)	1.542(11)
C(27)-C(34)	1.553(16)
C(28)-C(33)	1.3900
C(28)-C(29)	1.3900
C(33)-C(32)	1.3900
C(33)-Cl(4)	1.695(6)
C(32)-C(31)	1.3900
C(32)-H(32)	0.9300
C(31)-C(30)	1.3900
C(31)-Cl(3)	1.727(6)
C(30)-C(29)	1.3900
C(30)-H(30)	0.9300
C(29)-H(29)	0.9300
C(34)-O(9)	1.174(13)
C(34)-O(10)	1.328(14)
C(35A)-C(36A)	1.47(3)

C(35A)-O(10)	1.55(2)
C(35A)-H(35A)	0.9700
C(35A)-H(35B)	0.9700
C(36A)-H(36A)	0.9600
C(36A)-H(36B)	0.9600
C(36A)-H(36C)	0.9600
C(36B)-C(35B)	1.48(2)
C(36B)-H(36D)	0.9600
C(36B)-H(36E)	0.9600
C(36B)-H(36F)	0.9600
C(35B)-O(10)	1.490(19)
C(35B)-H(35C)	0.9700
C(35B)-H(35D)	0.9700
N(1)-N(2)	1.399(10)
N(2)-C(38)	1.260(11)
C(38)-H(38)	0.9300
N(4)-N(5)	1.350(10)
N(5)-C(37)	1.269(12)
C(37)-H(37)	0.9300
O(3)-H(3A)	0.8199
O(8)-H(8)	0.8201
O(1) C(1) N(1)	125 0(11)
O(1) - C(1) - N(1)	120.7(11)
O(1)-C(1)-C(2)	130.7(11)
N(1)-C(1)-C(2)	104.3(9)
C(3)-C(2)-C(7)	120.0
C(3)-C(2)-C(1)	131.1(8)
C(7)-C(2)-C(1)	108.9(8)
C(2) - C(3) - C(4)	120.0
C(2)- $C(3)$ - $H(3)$	120.0
C(4)-C(3)-H(3)	120.0
C(3)-C(4)-C(5)	120.0
C(3)-C(4)-H(4)	120.0
C(5)-C(4)-H(4)	120.0
C(6) - C(5) - C(4)	120.0
C(6)-C(5)-H(5)	120.0
C(4)-C(5)-H(5)	120.0
C(5)-C(6)-C(7)	120.0
C(5)-C(6)-H(6)	120.0
--------------------	-----------
C(7)-C(6)-H(6)	120.0
C(6)-C(7)-C(2)	120.0
C(6)-C(7)-C(8)	130.9(7)
C(2)-C(7)-C(8)	109.0(7)
O(2)-C(8)-N(1)	125.9(10)
O(2)-C(8)-C(7)	129.4(10)
N(1)-C(8)-C(7)	104.6(9)
O(3)-C(9)-C(10)	109.7(8)
O(3)-C(9)-C(38)	111.2(9)
C(10)-C(9)-C(38)	109.3(8)
O(3)-C(9)-C(16)	104.4(9)
C(10)-C(9)-C(16)	111.9(9)
C(38)-C(9)-C(16)	110.2(9)
C(15)-C(10)-C(11)	120.0
C(15)-C(10)-C(9)	121.4(6)
C(11)-C(10)-C(9)	118.5(6)
C(14)-C(15)-C(10)	120.0
C(14)-C(15)-Cl(2)	117.5(5)
C(10)-C(15)-Cl(2)	122.5(5)
C(15)-C(14)-C(13)	120.0
C(15)-C(14)-H(14)	120.0
C(13)-C(14)-H(14)	120.0
C(14)-C(13)-C(12)	120.0
C(14)-C(13)-Cl(1)	120.3(5)
C(12)-C(13)-Cl(1)	119.7(5)
C(11)-C(12)-C(13)	120.0
C(11)-C(12)-H(12)	120.0
C(13)-C(12)-H(12)	120.0
C(12)-C(11)-C(10)	120.0
C(12)-C(11)-H(11)	120.0
C(10)-C(11)-H(11)	120.0
O(4)-C(16)-O(5)	126.6(12)
O(4)-C(16)-C(9)	123.4(12)
O(5)-C(16)-C(9)	109.9(10)
C(18)-C(17)-O(5)	110.7(11)
C(18)-C(17)-H(17A)	109.5
O(5)-C(17)-H(17A)	109.5

C(18)-C(17)-H(17B)	109.5
O(5)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	108.1
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
O(6)-C(19)-C(20)	130.9(12)
O(6)-C(19)-N(4)	124.2(11)
C(20)-C(19)-N(4)	104.8(10)
C(21)-C(20)-C(25)	120.0
C(21)-C(20)-C(19)	130.0(8)
C(25)-C(20)-C(19)	109.9(8)
C(20)-C(21)-C(22)	120.0
C(20)-C(21)-H(21)	120.0
C(22)-C(21)-H(21)	120.0
C(23)-C(22)-C(21)	120.0
C(23)-C(22)-H(22)	120.0
C(21)-C(22)-H(22)	120.0
C(24)-C(23)-C(22)	120.0
C(24)-C(23)-H(23)	120.0
C(22)-C(23)-H(23)	120.0
C(23)-C(24)-C(25)	120.0
C(23)-C(24)-H(24)	120.0
C(25)-C(24)-H(24)	120.0
C(24)-C(25)-C(20)	120.0
C(24)-C(25)-C(26)	130.7(8)
C(20)-C(25)-C(26)	109.3(8)
O(7)-C(26)-N(4)	126.0(10)
O(7)-C(26)-C(25)	129.5(11)
N(4)-C(26)-C(25)	104.5(9)
O(8)-C(27)-C(37)	111.1(9)
O(8)-C(27)-C(28)	108.9(8)
C(37)-C(27)-C(28)	108.5(8)
O(8)-C(27)-C(34)	106.6(9)
C(37)-C(27)-C(34)	111.9(10)

C(28)-C(27)-C(34)	109.8(9)
C(33)-C(28)-C(29)	120.0
C(33)-C(28)-C(27)	121.4(7)
C(29)-C(28)-C(27)	118.6(7)
C(28)-C(33)-C(32)	120.0
C(28)-C(33)-Cl(4)	122.9(5)
C(32)-C(33)-Cl(4)	117.1(5)
C(31)-C(32)-C(33)	120.0
C(31)-C(32)-H(32)	120.0
C(33)-C(32)-H(32)	120.0
C(32)-C(31)-C(30)	120.0
C(32)-C(31)-Cl(3)	118.9(5)
C(30)-C(31)-Cl(3)	121.0(5)
C(31)-C(30)-C(29)	120.0
C(31)-C(30)-H(30)	120.0
C(29)-C(30)-H(30)	120.0
C(30)-C(29)-C(28)	120.0
C(30)-C(29)-H(29)	120.0
C(28)-C(29)-H(29)	120.0
O(9)-C(34)-O(10)	126.5(13)
O(9)-C(34)-C(27)	123.0(13)
O(10)-C(34)-C(27)	110.5(11)
C(36A)-C(35A)-O(10)	96(2)
C(36A)-C(35A)-H(35A)	112.5
O(10)-C(35A)-H(35A)	112.5
C(36A)-C(35A)-H(35B)	112.5
O(10)-C(35A)-H(35B)	112.5
H(35A)-C(35A)-H(35B)	110.0
C(35A)-C(36A)-H(36A)	109.5
C(35A)-C(36A)-H(36B)	109.5
H(36A)-C(36A)-H(36B)	109.5
C(35A)-C(36A)-H(36C)	109.5
H(36A)-C(36A)-H(36C)	109.5
H(36B)-C(36A)-H(36C)	109.5
C(35B)-C(36B)-H(36D)	109.5
C(35B)-C(36B)-H(36E)	109.5
H(36D)-C(36B)-H(36E)	109.5
C(35B)-C(36B)-H(36F)	109.5

H(36D)-C(36B)-H(36F)	109.5
H(36E)-C(36B)-H(36F)	109.5
C(36B)-C(35B)-O(10)	101.8(17)
C(36B)-C(35B)-H(35C)	111.4
O(10)-C(35B)-H(35C)	111.4
C(36B)-C(35B)-H(35D)	111.4
O(10)-C(35B)-H(35D)	111.4
H(35C)-C(35B)-H(35D)	109.3
C(8)-N(1)-N(2)	129.7(9)
C(8)-N(1)-C(1)	113.1(9)
N(2)-N(1)-C(1)	116.9(9)
C(38)-N(2)-N(1)	117.0(8)
N(2)-C(38)-C(9)	115.2(10)
N(2)-C(38)-H(38)	122.4
C(9)-C(38)-H(38)	122.4
N(5)-N(4)-C(26)	129.2(9)
N(5)-N(4)-C(19)	118.8(9)
C(26)-N(4)-C(19)	111.4(9)
C(37)-N(5)-N(4)	120.1(9)
N(5)-C(37)-C(27)	116.9(10)
N(5)-C(37)-H(37)	121.5
C(27)-C(37)-H(37)	121.5
C(9)-O(3)-H(3A)	108.2
C(16)-O(5)-C(17)	116.3(9)
C(27)-O(8)-H(8)	109.3
C(34)-O(10)-C(35B)	107.2(12)
C(34)-O(10)-C(35A)	121.4(19)

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	76(8)	68(7)	71(8)	7(6)	-3(7)	-6(7)
C(2)	78(8)	59(7)	60(7)	3(6)	-11(6)	12(6)
C(3)	74(8)	66(7)	86(9)	1(7)	-2(7)	12(7)
C(4)	91(9)	67(7)	91(9)	-17(7)	-26(8)	6(7)
C(5)	91(10)	84(9)	90(10)	-15(8)	-23(8)	-8(8)
C(6)	66(8)	86(8)	95(10)	1(8)	-6(7)	-2(7)
C(7)	62(7)	62(7)	77(8)	1(7)	-13(7)	2(6)
C(8)	55(8)	68(7)	71(8)	6(6)	7(6)	5(6)
C(9)	66(7)	68(7)	87(8)	-14(7)	-6(6)	-10(7)
C(10)	77(8)	54(6)	60(7)	0(5)	-13(6)	0(6)
C(15)	40(6)	78(8)	84(8)	-15(7)	-4(6)	15(6)
C(14)	76(8)	67(7)	72(8)	-16(6)	3(6)	-7(6)
C(13)	76(7)	60(7)	86(8)	-8(6)	-3(7)	-1(6)
C(12)	72(7)	90(9)	83(8)	8(7)	-9(7)	2(7)
C(11)	61(7)	85(8)	82(8)	-21(7)	-10(6)	-11(7)
C(16)	120(10)	59(8)	81(9)	-12(7)	-18(9)	5(8)
C(17)	134(12)	108(11)	122(13)	-24(9)	-21(9)	55(10)
C(18)	178(14)	152(14)	86(10)	11(10)	2(10)	85(12)
C(19)	64(8)	77(8)	96(10)	-8(7)	-17(8)	-1(7)
C(20)	66(8)	78(8)	65(7)	-4(7)	-7(6)	-4(6)
C(21)	82(9)	92(9)	85(10)	-7(8)	3(7)	11(8)
C(22)	116(10)	74(8)	71(8)	-2(7)	7(8)	-3(8)
C(23)	106(11)	92(9)	94(10)	14(8)	-14(8)	21(9)
C(24)	77(8)	64(8)	117(11)	-14(8)	1(8)	13(7)
C(25)	64(7)	51(7)	88(8)	-13(6)	-4(7)	-5(6)
C(26)	87(10)	54(7)	70(8)	2(6)	-6(7)	-3(7)
C(27)	83(8)	73(8)	64(7)	-3(6)	-5(6)	14(7)
C(28)	71(7)	44(6)	82(8)	8(6)	-5(7)	2(6)
C(33)	66(7)	63(7)	76(7)	-3(6)	-16(6)	-13(6)
C(32)	78(8)	66(7)	85(8)	1(6)	5(7)	-1(7)
C(31)	78(7)	67(7)	63(6)	-7(6)	-6(6)	-7(6)
C(30)	83(8)	57(7)	102(9)	3(7)	-13(7)	-5(7)
C(29)	69(7)	76(8)	74(7)	-9(6)	-11(6)	8(6)

Table 2-4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 1_a.The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

C(34)	133(11)	67(9)	86(10)	-11(8)	-15(9)	2(9)
C(35A)	173(12)	65(10)	131(10)	4(10)	-56(11)	-22(9)
C(36A)	172(18)	79(14)	128(15)	16(12)	-40(16)	4(14)
C(36B)	147(17)	75(14)	141(14)	17(13)	-40(13)	-23(13)
C(35B)	180(12)	57(9)	137(10)	5(9)	-54(10)	-13(9)
Cl(1)	100(2)	107(2)	82(2)	8(2)	-26(2)	4(2)
Cl(2)	63(2)	111(2)	96(2)	-5(2)	-5(2)	8(2)
Cl(3)	126(3)	118(2)	80(2)	-21(2)	-7(2)	-29(2)
Cl(4)	71(2)	130(3)	107(2)	-4(2)	-9(2)	-15(2)
N(1)	71(6)	60(6)	60(5)	-2(5)	-12(5)	7(5)
N(2)	65(5)	65(6)	75(6)	3(5)	-4(5)	0(5)
C(38)	65(7)	73(8)	74(7)	1(7)	1(6)	5(6)
N(4)	56(6)	73(6)	65(6)	-1(5)	0(5)	4(5)
N(5)	75(6)	65(6)	76(6)	-1(5)	-17(5)	6(5)
C(37)	68(7)	65(7)	73(7)	-2(7)	-21(6)	4(6)
O(1)	64(5)	112(6)	95(5)	-8(5)	4(4)	-11(5)
O(2)	76(5)	111(7)	97(6)	-7(5)	16(5)	-12(5)
O(3)	75(5)	85(5)	90(5)	4(4)	-3(4)	-25(4)
O(4)	207(10)	82(6)	90(6)	-23(5)	-40(7)	38(7)
O(5)	118(6)	82(6)	70(5)	-4(4)	-19(5)	24(5)
O(6)	69(5)	160(8)	90(6)	4(6)	5(5)	26(6)
O(7)	67(5)	101(6)	95(6)	15(5)	17(5)	9(5)
O(8)	123(7)	109(6)	85(5)	-8(5)	-3(5)	49(6)
O(9)	247(12)	60(5)	114(7)	2(5)	-55(8)	-1(7)
O(10)	178(8)	69(5)	134(7)	7(5)	-68(7)	-26(5)

	X	У	Z	U(eq)
H(3)	2141	7087	10304	90
H(4)	3455	8002	10717	100
H(5)	4962	8137	10137	106
H(6)	5155	7357	9143	98
H(14)	3130	5495	5243	86
H(12)	148	5186	5591	98
H(11)	511	4484	6592	91
H(17A)	3727	1762	7600	146
H(17B)	4667	2387	7412	146
H(18A)	5030	1726	8369	208
H(18B)	3978	2019	8665	208
H(18C)	4800	2792	8519	208
H(21)	6772	2858	8061	104
H(22)	8053	1908	8479	104
H(23)	9527	1669	7880	117
H(24)	9721	2380	6862	103
H(32)	8172	4675	2951	91
H(30)	5146	4616	3188	97
H(29)	5331	5199	4244	87
H(35A)	9756	7039	5532	148
H(35B)	9167	7717	5040	148
H(36A)	9224	8411	6091	190
H(36B)	8100	8184	5893	190
H(36C)	8681	7515	6378	190
H(36D)	9808	8094	6005	181
H(36E)	9102	7365	6361	181
H(36F)	9912	7012	5854	181
H(35C)	9016	7736	5008	150
H(35D)	8198	8091	5520	150
H(38)	3397	5149	7530	85
H(37)	8073	4701	5255	83
H(3A)	1250	4115	7814	125

Table 2-5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 1_a.

H(8)	5888	5656	5516	158

O(1)-C(1)-C(2)-C(3)	-2.0(16)
N(1)-C(1)-C(2)-C(3)	-179.0(5)
O(1)-C(1)-C(2)-C(7)	178.2(10)
N(1)-C(1)-C(2)-C(7)	1.2(8)
C(7)-C(2)-C(3)-C(4)	0.0
C(1)-C(2)-C(3)-C(4)	-179.8(8)
C(2)-C(3)-C(4)-C(5)	0.0
C(3)-C(4)-C(5)-C(6)	0.0
C(4)-C(5)-C(6)-C(7)	0.0
C(5)-C(6)-C(7)-C(2)	0.0
C(5)-C(6)-C(7)-C(8)	-178.3(8)
C(3)-C(2)-C(7)-C(6)	0.0
C(1)-C(2)-C(7)-C(6)	179.8(6)
C(3)-C(2)-C(7)-C(8)	178.6(6)
C(1)-C(2)-C(7)-C(8)	-1.6(7)
C(6)-C(7)-C(8)-O(2)	-1.0(15)
C(2)-C(7)-C(8)-O(2)	-179.4(10)
C(6)-C(7)-C(8)-N(1)	179.7(5)
C(2)-C(7)-C(8)-N(1)	1.3(8)
O(3)-C(9)-C(10)-C(15)	-175.1(6)
C(38)-C(9)-C(10)-C(15)	62.7(9)
C(16)-C(9)-C(10)-C(15)	-59.7(10)
O(3)-C(9)-C(10)-C(11)	7.5(9)
C(38)-C(9)-C(10)-C(11)	-114.7(8)
C(16)-C(9)-C(10)-C(11)	122.9(8)
C(11)-C(10)-C(15)-C(14)	0.0
C(9)-C(10)-C(15)-C(14)	-177.4(7)
C(11)-C(10)-C(15)-Cl(2)	-176.8(5)
C(9)-C(10)-C(15)-Cl(2)	5.8(7)
C(10)-C(15)-C(14)-C(13)	0.0
Cl(2)-C(15)-C(14)-C(13)	177.0(5)
C(15)-C(14)-C(13)-C(12)	0.0
C(15)-C(14)-C(13)-Cl(1)	-178.6(5)
C(14)-C(13)-C(12)-C(11)	0.0
Cl(1)-C(13)-C(12)-C(11)	178.7(5)
C(13)-C(12)-C(11)-C(10)	0.0

C(15)-C(10)-C(11)-C(12)	0.0
C(9)-C(10)-C(11)-C(12)	177.5(7)
O(3)-C(9)-C(16)-O(4)	85.9(15)
C(10)-C(9)-C(16)-O(4)	-32.7(16)
C(38)-C(9)-C(16)-O(4)	-154.6(13)
O(3)-C(9)-C(16)-O(5)	-90.7(10)
C(10)-C(9)-C(16)-O(5)	150.7(9)
C(38)-C(9)-C(16)-O(5)	28.9(13)
O(6)-C(19)-C(20)-C(21)	-4.8(16)
N(4)-C(19)-C(20)-C(21)	179.5(5)
O(6)-C(19)-C(20)-C(25)	177.7(11)
N(4)-C(19)-C(20)-C(25)	2.0(8)
C(25)-C(20)-C(21)-C(22)	0.0
C(19)-C(20)-C(21)-C(22)	-177.3(8)
C(20)-C(21)-C(22)-C(23)	0.0
C(21)-C(22)-C(23)-C(24)	0.0
C(22)-C(23)-C(24)-C(25)	0.0
C(23)-C(24)-C(25)-C(20)	0.0
C(23)-C(24)-C(25)-C(26)	178.1(8)
C(21)-C(20)-C(25)-C(24)	0.0
C(19)-C(20)-C(25)-C(24)	177.8(7)
C(21)-C(20)-C(25)-C(26)	-178.5(7)
C(19)-C(20)-C(25)-C(26)	-0.7(7)
C(24)-C(25)-C(26)-O(7)	1.2(15)
C(20)-C(25)-C(26)-O(7)	179.5(10)
C(24)-C(25)-C(26)-N(4)	-179.2(5)
C(20)-C(25)-C(26)-N(4)	-0.9(8)
O(8)-C(27)-C(28)-C(33)	170.1(6)
C(37)-C(27)-C(28)-C(33)	-68.8(10)
C(34)-C(27)-C(28)-C(33)	53.8(10)
O(8)-C(27)-C(28)-C(29)	-9.2(10)
C(37)-C(27)-C(28)-C(29)	111.9(8)
C(34)-C(27)-C(28)-C(29)	-125.6(8)
C(29)-C(28)-C(33)-C(32)	0.0
C(27)-C(28)-C(33)-C(32)	-179.3(7)
C(29)-C(28)-C(33)-Cl(4)	-179.8(6)
C(27)-C(28)-C(33)-Cl(4)	0.9(7)
C(28)-C(33)-C(32)-C(31)	0.0

Cl(4)-C(33)-C(32)-C(31)	179.8(5)
C(33)-C(32)-C(31)-C(30)	0.0
C(33)-C(32)-C(31)-Cl(3)	177.2(5)
C(32)-C(31)-C(30)-C(29)	0.0
Cl(3)-C(31)-C(30)-C(29)	-177.2(5)
C(31)-C(30)-C(29)-C(28)	0.0
C(33)-C(28)-C(29)-C(30)	0.0
C(27)-C(28)-C(29)-C(30)	179.4(7)
O(8)-C(27)-C(34)-O(9)	-75.6(15)
C(37)-C(27)-C(34)-O(9)	162.8(13)
C(28)-C(27)-C(34)-O(9)	42.2(17)
O(8)-C(27)-C(34)-O(10)	103.5(11)
C(37)-C(27)-C(34)-O(10)	-18.1(14)
C(28)-C(27)-C(34)-O(10)	-138.7(10)
O(2)-C(8)-N(1)-N(2)	6.9(16)
C(7)-C(8)-N(1)-N(2)	-173.8(7)
O(2)-C(8)-N(1)-C(1)	-179.9(10)
C(7)-C(8)-N(1)-C(1)	-0.6(10)
O(1)-C(1)-N(1)-C(8)	-177.6(10)
C(2)-C(1)-N(1)-C(8)	-0.3(10)
O(1)-C(1)-N(1)-N(2)	-3.4(14)
C(2)-C(1)-N(1)-N(2)	173.8(7)
C(8)-N(1)-N(2)-C(38)	-7.8(13)
C(1)-N(1)-N(2)-C(38)	179.2(9)
N(1)-N(2)-C(38)-C(9)	179.4(8)
O(3)-C(9)-C(38)-N(2)	-3.6(13)
C(10)-C(9)-C(38)-N(2)	117.7(9)
C(16)-C(9)-C(38)-N(2)	-118.9(10)
O(7)-C(26)-N(4)-N(5)	-7.5(16)
C(25)-C(26)-N(4)-N(5)	173.0(8)
O(7)-C(26)-N(4)-C(19)	-178.2(10)
C(25)-C(26)-N(4)-C(19)	2.3(10)
O(6)-C(19)-N(4)-N(5)	9.5(15)
C(20)-C(19)-N(4)-N(5)	-174.5(7)
O(6)-C(19)-N(4)-C(26)	-178.7(11)
C(20)-C(19)-N(4)-C(26)	-2.7(10)
C(26)-N(4)-N(5)-C(37)	2.9(14)
C(19)-N(4)-N(5)-C(37)	173.0(9)

N(4)-N(5)-C(37)-C(27)	-179.2(8)
O(8)-C(27)-C(37)-N(5)	-2.8(13)
C(28)-C(27)-C(37)-N(5)	-122.6(10)
C(34)-C(27)-C(37)-N(5)	116.2(11)
O(4)-C(16)-O(5)-C(17)	2(2)
C(9)-C(16)-O(5)-C(17)	178.7(10)
C(18)-C(17)-O(5)-C(16)	-169.1(13)
O(9)-C(34)-O(10)-C(35B)	5(3)
C(27)-C(34)-O(10)-C(35B)	-173.6(18)
O(9)-C(34)-O(10)-C(35A)	-17(2)
C(27)-C(34)-O(10)-C(35A)	163.5(16)
C(36B)-C(35B)-O(10)-C(34)	-175(3)
C(36A)-C(35A)-O(10)-C(34)	114(3)

Symmetry transformations used to generate equivalent atoms:

Table 2-7.	Hydrogen bonds for 1_a	[Å and °].
------------	------------------------	------------

D-HA $d(D-H)$ $d(HA)$ $d(DA)$ <(DHA)	D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
--------------------------------------	------	--------	-------	-------	--------