Continuous Heterogeneous Isomerization of 3/4-Methyltetrahydrophthalic Anhydride (3/4-MTHPA) with Acid and Base Modified γ- Al₂O₃ catalysts

Lei Yin¹, HuiYang Li², Tingting Ge¹, Yuchao Li¹, Cuncun Zuo^{1,*}, Ming Wang¹,

GuangJun Cui^{2,*}, Haofei Huang^{1,*}, Lin Guo³

The article will first be published in the New Journal of Chemistry.

Electronic Supplemental Information

KOH, CH₃COOK and KHCO₃ salts were subjected to TG tests. SI Fig 1 shows that KOH, CH₃COOK and KHCO₃ have significant weight loss below 200°C, owing to the removal of crystal water in the salt. The catalyst decomposes into KOx at temperatures above 200°C, resulting in secondary weight loss. The weight tends to plateau around 600°C.

SI Fig 2 shows that weight loss occurs below 200°C, owing primarily to the removal of crystal water in the catalyst. In the test of 10%-K/Al₂O₃ and 7%-P/Al₂O₃ catalysts, there is no obvious weight loss phenomenon. Other catalysts, on the other hand, have two weight loss processes. The residual salt on the catalyst surface decomposes at temperatures above 200°C, resulting in secondary weight loss. Because of the increased loading, the calcined catalyst still contained volatiles, most likely because CH₃COOK and NH₄H₂PO₄ were not completely decomposed during the catalyst preparation process. The results show that the prepared catalyst's lattice is in a stable state. The addition of K and P can result in the formation of a large number of basic and acidic sites on the catalyst surface, increasing the activity of the catalyst.

Fig 1. TG curve of the catalyst: KOH, CH₃COOK, KHCO₃.

Fig 2. TG curve of the catalyst: a. X%-K/Al₂O₃ (X= 2, 5, 10, 15 and 20). b. X%-P/Al₂O₃ (X= 5, 7, 10, 15 and 20).

Fig 3. XRD patterns of 500 °C, 600 °C and 700 °C 2%-M/Al₂O₃ (M= CH₃COOK,

K₂CO₃, KOH, NaOH and Na₂CO₃, the load of M was 2%).

Fig 4. XRD patterns of 2%-M/Al₂O₃ (M= CH₃COOK, K₂CO₃, KOH, NaOH and Na₂CO₃, the load of M was 2%).

Fig. 5 Variation of component contents in the isomerization reaction of 3-MTHPA. a. Basic isomerization. b. Acid isomerization.

Based on 3/4-MTHPA, the acidic and basic isomerization of MTHPA was studied by ¹H-NMR. The hydrogen shift of 4-MTHPA's main functional group can be clearly seen in SI Fig 6.a. δ =5.45 is the peak segment of -C=C-H, δ =1.76 is the peak segment of -CH₃, and the coupled H peaks at other positions. SI Fig 6.b depicts the spectrum of 4-MTHPA after basic isomerization, and it is clear that the H shifts of several functional groups have changed. δ =5.5, 5.6 represents the peak segment of -C=C-H, δ =3.4~3.7 represents the peak segment of common -C-C-H, and δ =1.8~2.6 represents the peak segment of -CH₂. After basic isomerization of 4-MTHPA, the change in H-shift demonstrated the emergence of new isomers.

Fig 6. ¹H-NMR spectrum analysis. a. 4-MTHPA acid isomerization; b. 4-MTHPA basic isomerization.

SI Fig 7 depicts the ¹H-NMR of the acid isomerization reaction of 4-MTHPA at various temperatures, and it is discovered that the morphology of the spectrum does not change significantly. During the experiment, however, the acid isomerized product could be in a liquid state and stable at room temperature. It is possible that steric stereoisomerism modifies 4-MTHPA so that it is fluid at room temperature.

Fig 7. Basic and acid isomerization process of 4-MTHPA, and its acidic isomerization at different temperatures (T=135, 150, 165, $180^{\circ}C$).

		1	
Nodes	Anhydride value (%)	Viscosity (Pa/s)	Density (g/ml 25°C)
120°C	40.96	solid	1.118
135°C	40.72	solid	1.2035
150°C	40.60	0.06290	1.2217
165°C	41.20	0.07348	1.2266
180°C	40.80	0.07744	1.2251
195°C	41.11	0.07825	1.2231
1.0h	40.60	0.06290	1.2217
1.5h	41.41	0.07292	1.2177
2.0h	41.01	0.07898	1.2164
2.5h	41.14	0.07885	1.2075
3.0h	40.87	0.07865	1.2121
3.5h	41.23	0.07891	1.2153
2%	40.87	0.07865	1.2121
5%	41.18	0.08063	1.2092
10%	40.47	0.08168	1.2116
15%	40.39	0.09421	1.2066
20%	40.68	0.11598	1.2328
0.5%	41.19	0.08040	1.2207
1.0%	40.94	0.08128	1.2223
2.0%	40.96	0.08339	1.2322
3.0%	40.39	0.09421	1.2066
4.0%	40.70	0.10628	1.2535

List 1. Anhydride value, viscosity, and density of 3-MTHPA basic isomerization products.

4-MTHPA and its isomeric products were solid at room temperature.

		-	
Nodes	Anhydride value (%)	Viscosity (Pa/s)	Density (g/ml 65°C)
120°C	40.93		1.1180
135°C	41.11		1.2035
150°C	40.55		1.2217
165°C	40.40		1.2566
180°C	39.09		1.2251
1.0h	40.40	1: d	1.2217
1.5h	40.62	SOIIO	1.2177
2.0h	40.41		1.2164
2.5h	39.04		1.2075
3.0h	40.07		1.2121
2%	39.36		1.2121
5%	40.07		1.2092
10%	40.77	0.08553	1.2116
15%	40.07		1.2066
20%	39.89		1.2328
0.5%	39.50		1.2207
1.0%	40.19		1.2223
2.0%	40.32		1.2322
3.0%	39.36		1.2066
4.0%	40.35		1.2535

List 2. Anhydride value, viscosity, and density of 4-MTHPA acid isomerization

products.

	•	
3/4- MTHPA ratio	Viscosity/basic (Pa/s)	Viscosity/acid (Pa/s)
3:4=1:0	solid	
3:4=1:1	0.06842	0.06040
3:4=1:1.5	0.06875	0.06090
3:4=1:2	0.07180	0.06180
3:4=2:1	0.06500	0.05810
3:4=1.5:1	0.04640	0.04290
3:4=1:0	solid	

List 3. The viscosity of 3/4-MTHPA with different ratios