Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## **Supporting Information**

# Improved H-adsorption ability and conductivity of Co-doped Mo<sub>2</sub>N cocatalyst for efficient photocatalytic H<sub>2</sub> generation of g-C<sub>3</sub>N<sub>4</sub>

Zhongxi Lu<sup>a1</sup>, Xudong He<sup>a1</sup>, Cheng Jin<sup>a</sup>, Haopeng Jiang<sup>a</sup>, Xiaohui Yu<sup>a,\*</sup>, Lijuan Sun<sup>a</sup>, Weikang

Wang <sup>a</sup>, Lele Wang <sup>a</sup>, Qinqin Liu <sup>a,\*</sup>

<sup>a</sup> School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China

\*Corresponding Authors

E-mail address: yutoukiki@163.com (X. Yu)

qqliu@ujs.edu.cn

(Q.

Liu)

#### **S1 Experimental**

#### S1.1 Preparation of g-C<sub>3</sub>N<sub>4</sub> nanosheets

Mesoporous g-C<sub>3</sub>N<sub>4</sub> nanosheets were synthesized by a calcination method. Usually, 5 g of urea is placed in an aluminum oxide boat with a lid and tightly wrapped around the boat with aluminum foil to achieve a seal. Mesoporous g-C<sub>3</sub>N<sub>4</sub> nanosheets were prepared by calcining the porcelain boat in a tube furnace at 550 °C for 4 h with a heating rate of 10 °C/min in argon atmosphere.

#### S1.2 Preparation of MoO<sub>3-x</sub> olive-like nanosheets

MoO<sub>3-x</sub> olive-like nanosheets were synthesized by a hydrothermal method. First, 2 mmol of commercial molybdenum powder was dissolved in 24 mL of n-butanol, to which 3 mL of H<sub>2</sub>O<sub>2</sub> (30 wt%) was added dropwise and stirred at room temperature for 30 min to form a transparent yellow solution. The yellow solution was then added to a 50 mL autoclave and heated to 140 °C for 12 h. The precipitate was washed with deionized water and ethanol, and then dried in vacuum at 60 °C for 12 h to obtain MoO<sub>3-x</sub> olive-like nanosheets.

#### **S2** Characterization

The structure, composition and light absorption were investigated by the X-ray diffraction (XRD, XRD-6100, Shimadzu), X-ray photoelectron spectroscopy (XPS, Thermo Fisher Nexsa) and ultraviolet-visible diffuse reflectance spectrum (UV-vis DRS, UV-2600 spectrophotometer), respectively. The morphology was studied by the scanning electron microscope (SEM, JSM-7001F) and transmission electron microscope (TEM, JEM-2100). The photoluminescence (PL) spectrum was obtained by fluorescence spectrophotometer (Hitachi, F-7000).

#### **S3** Photocatalytic experiments

10 mg catalysts were dispersed in an 80 ml three-necked reactor containing 10 % triethanolamine solution and then purged with N<sub>2</sub> to eliminate air. The reaction system was placed under the irradiation of a LED lamp equipped with a cutoff filter ( $\lambda$  = 420 nm) as the source for testing H<sub>2</sub> evolution. The H<sub>2</sub> production was checked by a gas chromatograph (GC-2014, Japan). The apparent quantum yield (AQY) was investigated. 10 mg catalysts were dispersed in an 80 ml three-necked reactor containing 10 % triethanolamine solution and then purged with N<sub>2</sub> to eliminate air. The reaction system was placed under the irradiation of a Xe lamp equipped with a bandpass filter cutoff filter ( $\lambda$  = 420 and 550 nm) as the source. The light intensity was 47251.6 and 39553.6 uW, respectively. The illumination area was 6 cm<sup>2</sup>.

The AQY calculated by the following equation

 $AQY (\%) = \frac{2 \times amount of H_2 molecules evolved in unit time}{number of incident photons in unit time} \times 100\%$ 

 $\lambda = 420$  nm:

$$E = \frac{hc}{\lambda}, E_{total} = ISt, N = \frac{E_{total}}{E},$$

N<sub>total</sub>

$$= \sum_{k=N_{\lambda 1}}^{N_{\lambda x}} (N_{\lambda 1} + N_{\lambda 2} + \dots + N_{\lambda X}) = (N_{405} + N_{406} + \dots + N_{435}) =$$

$$N_{produce/s} = N_{total} \times S_{light \ source} = 7.802 \times 10^{16} \times 6 = 4.681 \times 10^{17}$$

N<sub>consume/s</sub>

$$= \frac{H_{H_2} \times M \times N_A \times 2}{T} = \frac{367.8 \times 10^{-6} \times 10 \times 10^{-3} \times 6.02 \times 10^{-3}}{3600}$$
$$1.23 \times 10^{15}$$
$$AQY = \frac{N_{consume/s}}{N_{produce/s}} \times 100\% = \frac{1.23 \times 10^{15}}{4.681 \times 10^{17}} \times 100\% = 0.26\%$$

 $\lambda = 550$  nm:

$$E = \frac{hc}{\lambda}, E_{total} = ISt, N = \frac{E_{total}}{E},$$

$$N_{total} = \sum_{k=N_{\lambda 1}}^{N_{\lambda x}} (N_{\lambda 1} + N_{\lambda 2} + \dots + N_{\lambda X}) = (N_{535} + N_{536} + \dots + N_{565}) = 4.$$
93391

× 10<sup>16</sup>

$$N_{produce/s} = N_{total} \times S_{light \ source} = 4.93391 \times 10^{16} \times 6 = 2.96 \times 10^{17}$$

$$N_{consume/s} = \frac{H_{H_2} \times M \times N_A \times 2}{T} = \frac{9.068 \times 10^{-6} \times 10 \times 10^{-3} \times 6.02 \times 10}{3600}$$

$$3.23 \times 10^{13}$$

$$AQY = \frac{N_{consume/s}}{N_{produce/s}} \times 100\% = \frac{3.32 \times 10^{13}}{4.681 \times 10^{17}} \times 100\% = 0.007\%$$



Fig. S1 Survey XPS spectra of the  $g-C_3N_4$  and  $Co-Mo_2N/g-C_3N_4$ .



Fig. S2 TEM elemental mapping of the Co-Mo $_2N/g$ -C $_3N_4$ .



Fig. S3  $H_2$  generation of the Co-Mo<sub>2</sub>N under visible light.



Fig. S4  $H_2$  generation of the MoP/g-C<sub>3</sub>N<sub>4</sub> and Mo<sub>2</sub>S/g-C<sub>3</sub>N<sub>4</sub> under visible light.



Fig. S5  $H_2$  generation by using different amount of Co-Mo<sub>2</sub>N/g-C<sub>3</sub>N<sub>4</sub> under visible light.



Fig. S6 AQY of the Co-Mo $_2N/g$ -C $_3N_4$  under visible light.



Fig. S7 UV-vis spectra of area: (a)  $g-C_3N_4$ , (b)  $Mo_2N/g-C_3N_4$ , (c) Cu- $Mo_2N/g-C_3N_4$ , (d) Co- $Mo_2N/g-C_3N_4$ .



Fig. S8 M-S plots of g-C\_3N\_4 (a), Mo\_2N/g-C\_3N\_4 (b), Cu-Mo\_2N/g-C\_3N\_4 (c) and Co-Mo\_2N/g-C\_3N\_4.



Fig. S9 Mechanism of higher  $H_2$  generation of the Co-Mo<sub>2</sub>N/g-C<sub>3</sub>N<sub>4</sub>.

Table. S1 The information of the AQY measurements

| Wavelength (nm) | light area (cm <sup>2</sup> ) | Substrate (uW) |
|-----------------|-------------------------------|----------------|
| 420             | 6                             | 47251.6        |
| 550             | 6                             | 39553.6        |

Table. S2 Area and integral fraction for UV-vis spectra.

| Samples  | g-C <sub>3</sub> N <sub>4</sub> | Mo <sub>2</sub> N/g-C <sub>3</sub> N <sub>4</sub> | Cu-Mo <sub>2</sub> N/g-C <sub>3</sub> N <sub>4</sub> | Co-Mo <sub>2</sub> N/g-C <sub>3</sub> N <sub>4</sub> |
|----------|---------------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Area     | 56.6                            | 135.8                                             | 303.9                                                | 385.3                                                |
| Fraction | 1                               | 2.4                                               | 5.37                                                 | 6.81                                                 |

Table. S3 Comparison of the photocatalytic  $H_2$  generation over different catalysts.

| Catalysis                                                | lish4 sources                | <b>b</b>   | H <sub>2</sub> production                | Ref. |
|----------------------------------------------------------|------------------------------|------------|------------------------------------------|------|
|                                                          | light source                 | substrate  | (μmol g <sup>-1</sup> ·h <sup>-1</sup> ) |      |
| MoP/g-C <sub>3</sub> N <sub>4</sub>                      | 80W LED                      | 100/ 750   | 327.5                                    |      |
|                                                          | λ=400 nm                     | 10% IEOA   |                                          | 1    |
| CoP/g-C <sub>3</sub> N <sub>4</sub>                      | 300 W Xe lamp                | 200/ TEO A | 201.5                                    | 2    |
|                                                          | λ>320 nm                     | 2076 IEOA  | 201.5                                    |      |
| MoO <sub>3</sub> /g-C <sub>3</sub> N <sub>4</sub>        | 300 W Xe lamp                | 20% TEO 4  | 328 75                                   | 3    |
|                                                          | λ≥420 nm                     | 2070 12071 | 520.75                                   |      |
| $Mo_2N/g$ - $C_3N_4$                                     | 300 W Xe lamp                | 20% TEOA   | 0.89                                     | 4    |
|                                                          | $\lambda \ge 420 \text{ nm}$ |            |                                          |      |
| Ni <sub>3</sub> N/g-C <sub>3</sub> N <sub>4</sub>        | 300 W Xe lamp                | 20% TEOA   | 305.4                                    | 5    |
|                                                          | λ≥420 nm                     |            |                                          |      |
| $MoS_2/g$ - $C_3N_4/TiO_2$                               | 300 W Xe lamp                | 25%        | 125                                      | 6    |
|                                                          | λ>400 nm                     | methanol   |                                          |      |
| Co(Mo-Mo <sub>2</sub> C)/g-C <sub>3</sub> N <sub>4</sub> | 300W Xe lamp                 | 20% TEOA   | 11291                                    | 7    |
|                                                          | λ≥420 nm                     |            |                                          |      |
| Co-Mo <sub>2</sub> N/g-C <sub>3</sub> N <sub>4</sub>     | 80W LED                      | 10% TEOA   | 367.8                                    | This |
|                                                          | λ=420 nm                     |            |                                          | Work |

### References

 W. Liu, J. Shen, Q. Liu, X. Yang and H. Tang, Porous MoP network structure as co-catalyst for H<sub>2</sub> Evolution over g-C<sub>3</sub>N<sub>4</sub> nanosheets, *Appl. Surf. Sci*, 2018, 462, 822-830.

2. F. Zhang, J. Wei, X. Zhang, J. Shen, X. Meng, H, Dong, D. Yang and X. Jun, ZIFderived CoP as a cocatalyst for enhanced photocatalytic H<sub>2</sub> production activity of g-C<sub>3</sub>N<sub>4</sub>, *Sustain. Energy Fuels*, 2018, **2**, 1356-1361.

3. H. Wang, N. Guan, Z. Feng, W. Xiang, H. Zhao and X. Zhang, Constructing defect engineered 2D/2D MoO<sub>3</sub>/g-C<sub>3</sub>N<sub>4</sub> Z-scheme heterojunction for enhanced photocatalytic activity, *J. Alloys Compd.*, 2022, **926**, 166964.

4. S. Gong, Z. Jiang, P. Shi, J. Fan, Q. Xu and Y. Min, Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: Molybdenum nitride/ultrathin graphitic carbon nitride, 2018, **238**, 318-327.

5. J. Ge, Y. Liu, D. Jiang, L. Zhang, P. Du, Integrating non-precious-metal cocatalyst  $Ni_3N$  with g-C<sub>3</sub>N<sub>4</sub> for enhanced photocatalytic H<sub>2</sub> production in water under visible-light irradiation, *Chin. J. Catal.*, 2019, **40**, 160-167.

6. X. Yang, H. Huang, M. Kubota, Z. He, N. Kobayashi, X. Zhou, B. Jin and J. Luo, Synergetic effect of  $MoS_2$  and  $g-C_3N_4$  as cocatalysts for enhanced photocatalytic  $H_2$ production activity of TiO<sub>2</sub>, *Mater. Res. Bull.*, 2016, **76**, 79-84.

7. Y. Zheng, J. Dong, C. Huang, L. Xia, Q. Wu, Q. Xu and W. Yao, Co-doped Mo-Mo<sub>2</sub>C cocatalyst for enhanced g-C<sub>3</sub>N<sub>4</sub> photocatalytic H<sub>2</sub> evolution, *Appl. Catal. B Environ.*, 2020, **260**, 118220.