Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## Supporting Information

## A computational study on CO<sub>2</sub> electrochemical reduction on the two dimensional metal -1,2,3,4,5,6,7,8,9,10,11,12-perthiolated coronene frameworks

Haoyan Zhang,<sup>a,b</sup> Lin Cheng,<sup>a,\*</sup> Kai Li,<sup>b</sup> Ying Wang,<sup>b</sup> Wencheng Wang <sup>c,\*</sup>

<sup>a</sup>College of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, Hohhot 010051, P. R. China

<sup>b</sup>State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. <sup>c</sup>Radiotherapy Laboratory, Jilin Cancer Hospital, Changchun 130012, P. R. China

\*Corresponding authors. <u>lcheng1983@aliyun.com</u>; <u>wencheng.w@163.com</u>.

|      | TM-S bond length $(Å)$  | a(Å)  | E <sub>ads</sub> | U    |
|------|-------------------------|-------|------------------|------|
| Sc   | 2.43, 2.43, 2.43, 2.43  | 14.37 | -0.09            | 0.08 |
| Ti   | 2.40, 2.39, 2.40, 2.40  | 14.27 | -0.10            | 3.97 |
| V    | 2.34, 2.34, 2.34, 2.34  | 14.11 | -0.49            | 4.60 |
| Cr   | 2.37, 2.37, 2.37, 2.37  | 14.15 | -0.14            | 4.70 |
| Mn   | 2.37, 2.37, 2.37, 2.37  | 14.10 | -0.14            | 5.52 |
| Fe   | 2.23, 2.23, 2.23, 2.23  | 13.79 | -0.15            | 4.29 |
| Co   | 2.19, 2.19, 2.19, 2.19  | 13.69 | -0.14            | 4.97 |
| Ni   | 2.11, 2.12, 2.11, 2.11  | 13.54 | -0.41            | 5.54 |
| Cu   | 2.22, 2.22, 2.22, 2.22  | 13.69 | -0.13            | 7.52 |
| Zn   | 2.27, 2.28, 2.28, 2.28, | 13.81 | -0.15            | 5.67 |
| Y    | 2.61, 2.61, 2.61, 2.61  | 14.82 | -0.64            | 2.60 |
| Zr   | 2.52, 2.48, 2.52, 2.49  | 14.45 | -1.72            | 3.58 |
| Nb   | 2.43, 2.33, 2.43, 2.33  | 14.27 | -1.07            | 1.89 |
| Mo   | 2.39, 2.37, 2.38, 2.38  | 14.22 | -0.25            | 2.37 |
| Ru   | 2.26, 2.26, 2.25, 2.26  | 13.91 | -0.50            | 2.50 |
| Rh   | 2.30, 2.18, 2.30, 2.18  | 13.77 | -0.95            | 3.09 |
| Pd   | 2.28, 2.28, 2.28, 2.28  | 13.85 | -0.41            | 1.77 |
| Ag   | 2.43, 2.43, 2.43, 2.43  | 14.60 | -0.13            | 3.39 |
| Sc-O | 2.76, 2.76, 2.76, 2.76  | 14.37 | -0.21            | 0.08 |
| Ti-O | 2.55, 2.54, 2.54, 2.54  | 14.27 | -0.16            | 3.97 |
| Zr-O | 2.68, 2.69, 2.71, 2.70  | 14.45 | -0.19            | 3.58 |
| Nb-O | 2.53, 2.51, 2.51, 2.49  | 14.27 | -0.13            | 1.89 |
| Mo-O | 2.43, 2.43, 2.43, 2.44  | 14.22 | -0.27            | 2.37 |

**Table S1.** The calculated metal-S bond distances, lattice parameters a, adsorption energies of CO<sub>2</sub>, and the calculated U values.

| anssonation | potentials | (0 us, 11 v) 01 1111 101 | I IVI   IIII · · | 11/1 11/211 | 2, at p11=0. |
|-------------|------------|--------------------------|------------------|-------------|--------------|
|             | Em         | Formation energy         | ${ m U_M}^0$     | n           | Udiss        |
| Sc          | -6.34      | -3.61                    | -2.08            | 3           | -0.88        |
| Ti          | -5.16      | -2.75                    | -1.63            | 2           | -0.25        |
| V           | -5.66      | -2.00                    | -1.18            | 2           | -0.18        |
| Cr          | -6.04      | -2.31                    | -0.91            | 2           | 0.25         |
| Mn          | -6.57      | -1.71                    | -1.19            | 2           | -0.33        |
| Fe          | -6.56      | -0.87                    | -0.45            | 2           | -0.01        |
| Co          | -3.81      | -2.10                    | -0.28            | 2           | 0.77         |
| Ni          | -2.99      | -1.64                    | -0.26            | 2           | 0.56         |
| Cu          | -2.38      | -0.56                    | 0.34             | 2           | 0.62         |
| Zn          | -0.34      | -1.73                    | -0.76            | 2           | 0.11         |
| Y           | -5.77      | -3.01                    | -2.37            | 3           | -1.37        |
| Zr          | -6.90      | -1.64                    | -1.45            | 4           | -1.04        |
| Nb          | -9.00      | -0.10                    | -1.10            | 3           | -1.07        |
| Mo          | -8.08      | -0.52                    | -0.20            | 3           | -0.03        |
| Ru          | -7.69      | -0.42                    | 0.46             | 2           | 0.67         |
| Rh          | -5.24      | -1.18                    | 0.60             | 2           | 1.19         |
| Pd          | -3.38      | -2.69                    | 0.95             | 2           | 2.29         |
| Ag          | -2.53      | 0.07                     | 0.80             | 1           | 0.73         |
| Sc-O        | -6.34      | -8.35                    | -2.08            | 3           | 0.70         |
| Ti-O        | -5.16      | -4.89                    | -1.63            | 2           | 0.81         |
| Zr-O        | -6.90      | -9.09                    | -1.45            | 4           | 0.82         |
| Nb-O        | -9.00      | -9.26                    | -1.10            | 3           | 1.99         |
| Mo-O        | -8.08      | -8.10                    | -0.20            | 3           | 2.50         |

**Table S2.** Standard dissolution potentials ( $UM^0$ , in V) of bulk metals and the calculated dissolution potentials (Udis, in V) of TM for TM +  $nH^+ \leftrightarrow TM^{n+} + n/2H_2$ , at pH=0.



Figure S1. The optimized structures of TM-PTC.



**Figure S2.** Free energy change for V-PTC in the gas phase (top), and the comparison of the free energy change both in the gas phase and in solution (bottom).



**Figure S3.** Free energy change in the gas phase (top two panels), and the comparison of the free energy change both in the gas phase and in solution (bottom two panels).