Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Data

An efficient photocatalytic system composed of Ti₃C₂ quantum

dots incorporated TiO₂ nanosheets and CuWO₄ nanoparticles:

Fabrication and its photocatalytic activity for H₂ production

Shiyi Ren, Lixia Qin, Taiyang Zhang, Xiangqing Li, Shi-Zhao Kang*

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China

* Corresponding author: Shi-Zhao Kang, Tel./fax: +86 21 60873061.

E-mail address: kangsz@sit.edu.cn (S.-Z. Kang)

Fig. S1. XRD patterns of (a) Ti_3AlC_2 and (b) the $CuWO_4$ nanoparticles.

Fig. S2. (A) HRTEM image of 4% $CuWO_4$ - Ti_3C_2/TiO_2 and (B) C element TEM-EDS line profile along the red arrow shown in Fig. S2A (red) and curve-fitting analysis (black).

Fig. S3. SEM image of CuWO₄ nanoparticles.

Fig. S4. Element mappings of 4% $CuWO_4$ -Ti₃C₂/TiO₂ (W, O, Ti, C and Cu).

Fig. S5. UV–vis spectra of (a) the Ti_3C_2 nanosheets, (b) the CuWO₄ nanoparticles, (c) Ti_3C_2/TiO_2 , and (d) 4% CuWO₄- Ti_3C_2/TiO_2 .

Fig. S6. UV–vis spectrum of P25.

Supplementary Table S1

Photocatalyst	Rate of H ₂ evolution	Stable hydrogen	Ref.
	(mmol g ⁻¹ h ⁻¹)	production time (h)	
CuWO ₄ -	2.(5	14	T1 1-
Ti_3C_2/TiO_2	3.65	14	I his work
Pt-TiO ₂	0.16	5	[1]
Ti ₃ C ₂ -TiO ₂ /Pt	1.60	12	[2]
Au/TiO ₂	0.36	4	[3]
Pd/TiO ₂	3.10	1	[4]
TiO ₂ -Ti ₃ C ₂ /Ru	0.24	5	[5]
CuO/TiO ₂	2.00	3	[6]
Truxene/TiO ₂	21	5	[7]
MoS_2/TiO_2	1.38	4	[8]
CdS/Ni-MOF	2.51	3	[9]
CdS/CuS	0.30	4	[10]
$Pt/IrO_2/g-C_3N_4$	2.47	2	[11]
WO ₃ -MoS ₂ -Pt	0.80	2	[12]
Zn-AgIn ₅ S ₈ /NiS	5.2	5	[13]

 Table S1. Photocatalytic activities of the photocatalysts reported previously.

Fig. S7. XRD patterns of 4% $CuWO_4$ - Ti_3C_2/TiO_2 before and after photocatalytic reaction.

Fig. S8. XPS spectra of the used 4% CuWO₄-Ti₃C₂/TiO₂: (A) Cu 2p, (B) W 4f, (C) O 1s, (D) C 1s and (E) Ti 2p, high-resolution XPS spectra (solid) and curve-fitting analysis (dot line) of the states of Cu, W, O, C, and Ti.

Supplementary Fig. S9

Fig. S9. Photostability of 4% $CuWO_4$ - Ti_3C_2/TiO_2 for photocatalytic hydrogen evolution (photocatalyst 10 mg; ethylene glycol aqueous solution 60 mL, 16.7vol.%; pH = 8; temperature 10°C; irradiation time between the two cycles 10 min).

Fig. S10. Effect of the content of CuWO₄ nanoparticles on the photocatalytic activity of CuWO₄-Ti₃C₂/TiO₂ (photocatalyst 10 mg; ethylene glycol aqueous solution 60 mL, 16.7vol.%; pH = 7; temperature 10°C; irradiation time 4 h).

Fig. S11. Effect of oxidation time on the photocatalytic activity of 4% CuWO₄- Ti_3C_2/TiO_2 (photocatalyst 10 mg; ethylene glycol aqueous solution 60 mL, 16.7vol.%; pH = 7; temperature 10°C; irradiation time 4 h).

Fig. S12. Fluorescence spectrum of the Ti_3C_2 nanosheets (excitation wavelength 320 nm).

Fig. S13. Tauc plots of (A) the $CuWO_4$ nanoparticles and (B) the TiO_2 nanosheets, and UPS spectra of (C) the $CuWO_4$ nanoparticles and (D) the TiO_2 nanosheets.

References

- S. Y. Moon, B. Naik, K. An, S. M. Kim and J. Y. Park, *RSC Adv.*, 2016,
 6, 18198-18203.
- 2 Y. Li, X. Deng, J. Tian, Z. Liang and H. Cui, *Appl. Mater. Today*, 2018, 13, 217-227.
- 3 N. Kunthakudee, T. Puangpetch, P. Ramakul, K. Serivalsatit and M. Hunsom, Int. J. Hydrogen Energy, 2022, 47, 23570-23582.
- 4 J. Wu, S. Lu, D. Ge, L. Zhang, W. Chen and H. Gu, *RSC Adv.*, 2016, **6**, 67502-67508.
- 5 Y. Liu, Y.-H. Li, X. Li, Q. Zhang, H. Yu, X. Peng and F. Peng, ACS Nano, 2020, 14, 14181-14189.
- 6 Y. Wang, M. Zhou, Y. He, Z. Zhou and Z. Sun, J. Alloys Compd., 2020, 813, 152184.
- 7 A. Valverde-Gonzalez, C. G. L. Calixto, M. Barawi, M. Gomez-Mendoza, V. A. de la P. O'Shea, M. Liras, B. Gomez-Lor, and M. Iglesias, ACS Appl. Energy Mater., 2020, 3, 4411-4420.
- 8 A. Tiwari, A. Gautam, S. Sk, D. S. Gavali, R. Thapa and U. Pal, J. Phys. Chem. C, 2021, 125, 11950-11962.
- 9 J. Guo, Y. Liang, L. Liu, J. Hu, H. Wang, W. An and W. Cui, *Appl. Surf. Sci.*, 2020, **522**, 146356.
- 10 X. Yang, G. Lu, B. Wang, T. Wang and Y. Wang, *RSC Adv.*, 2019, 9, 25142.
- 11 C. Chen, J. Zhao and Y. Xu, Catal. Sci. Technol., 2020, 10, 6378-6386.
- 12 X. Cui, Y. Zhou, J. Wu, S. Ling, L. Zhao, J. Zhang, J. Wang, W. Qin and Y. Zhang, *Nanotechnology*, 2020, **31**, 185701.
- 13 D. Zhang, W. Cao, B. Mao, Y. Liu, F. Li, W. Dong, T. Jiang, Y.-C.

Yong, and W. Shi, Ind. Eng. Chem. Res., 2020, 59, 16249-16257.