Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

For

Effect of Formamidinium (FA) ions on the Mixed 'A'-site Based Bromide Perovskite (APbBr₃) Thin Films

Deepak Aloysius¹, Arindam Mondal¹, Satyajit Gupta^{1*}, Eran Edri², Sabyasachi Mukhopadhyay³.

¹Department of Chemistry, Indian Institute of Technology Bhilai, Chhattisgarh, India ²Department of Chemical Engineering, Ben-Gurion University of the Negev, Israel ³Department of Physics, SRM University-AP, Andhra Pradesh, India *Corresponding Author; email: satyajit@iitbhilai.ac.in

S1 Goldsmith's Tolerance factor (t) and Octahedral Factor (μ)

 $\mathbf{t} = \frac{rA_{effective} + rBr}{\sqrt{2} (\mathbf{r}Pb^{2+} + rBr)}$

$$\mu = \frac{rPb^{2+}}{rBr^{-}}$$

For PbBr₆⁴⁻ octahedra, the ' μ ' value is 0.607. To form stable BX₆ octahedra, ' μ ' should be between 0.442 to 0.895. Also, the 't' value for FA_{0.5}MA_{0.4}Cs_{0.1}PbBr₃ is 0.961 and that for MA_{0.9}Cs_{0.1}PbBr₃ is 0.92. For perovskites to follow a cubical structure, 't' should be between 0.813 to 1.107.

XRD after CV analysis

Fig. S1 XRD after CV within electrochemical stability window (1.5 V to -0.8 V) and beyond stability window (2.5 V to -2.5 V) of **a**) $MA_{0.9}Cs_{0.1}PbBr_3$ and **b**) $FA_{0.5}MA_{0.4}Cs_{0.1}PbBr_3$ perovskites.

S2 Formal Potential and HOMO level determination from CV

To calibrate the electrochemical system and determine the formal potential, 1.9 mM ferrocene was dissolved in the solvent-electrolyte mixture.¹ The corresponding CV was measured with blank FTO using Ag/AgCl reference electrode and Pt counter electrode. We determined The formal potential by taking the average of both oxidation (1.07 V) and reduction peak potentials (-0.24 V), as shown in Fig. S2a. The HOMO energy level of both HOIPs was determined by the oxidation potential generated from the CV peak.

perovskites

The equation is E_{HOMO} =-e[($E_{(ox)}$ -E1/2_{ferrocene})+4.8] eV, where 'e' is the electronic charge, $E_{(ox)}$ is the oxidation peak potential and E1/2_{ferrocene} is the formal potential obtained². In comparison, Fc/Fc⁺ redox reference and 4.8 eV is the HOMO energy level of ferrocene, which is already known.

Formal potential,

 $E_{(1/2)} = 1/2 [Ep(o) + Ep(r)]$ E(1/2)=1/2[1.07+(-0.24)]=0.41 V

HOMO energy level of FA_{0.5}MA_{0.4}Cs_{0.1}PbBr₃,

$$E_{(HOMO)} = -e[(E_{(ox)}-E1/2_{(ferrocene))}+4.8]$$

= -e[1.29-0.41]+4.8
= -5.68 eV

HOMO energy level of MA_{0.9}Cs_{0.1}PbBr_{3,}

$$E_{(HOMO)} = -e[(E_{(ox)}-E1/2_{(ferrocene))} + 4.8]$$

= -e[1.21-0.41]+4.8
= -5.60 eV

Fig. S3 a) I-V curve b) EQE of Perovskite solar cell devices made of both $FA_{0.5}MA_{0.4}Cs_{0.1}PbBr_3$ and $MA_{0.9}Cs_{0.1}PbBr_3$ perovskites. c) SEM image showing perovskite solar cell cross-section.

Fig. S4: Time-resolved PL data of both $FA_{0.5}MA_{0.4}Cs_{0.1}PbBr_3$ and $MA_{0.9}Cs_{0.1}PbBr_3$ perovskites. The average lifetime (τ) of $FA_{0.5}MA_{0.4}Cs_{0.1}PbBr_3$ perovskite is 124 ps and that of $MA_{0.9}Cs_{0.1}PbBr_3$ perovskites is 85 ps.

Perovskite Composition	Atomic % (±4%)	
	Cs: Pb: Br	
FA _{0.5} MA _{0.4} Cs _{0.1} PbBr ₃	3.4: 28.2: 68.1	

3.7: 28.1: 68.5

 Table S1 Atomic % ratio of Cs, Pb and Br elements in perovskite thin films

 Table S2 Perovskite solar cell device parameters.

MA_{0.9}Cs_{0.1}PbBr₃

НТМ	Perovskite Composition	V (V)	J _{sc} (mA/cm ²)	Fill Factor (%)	Efficiency (η)
РТАА	FA _{0.5} MA _{0.4} Cs _{0.1} PbBr ₃	0.67	-3.22	51.1	1.11
	MA _{0.9} Cs _{0.1} PbBr ₃	0.62	-2.71	53.59	0.9

Notes and references:

- 1 D. Cardenas-Morcoso, A. F. Gualdrón-Reyes, A. B. Ferreira Vitoreti, M. García-Tecedor, S. J. Yoon, M. Solis de la Fuente, I. Mora-Seró and S. Gimenez, *J Phys Chem Lett*, 2019, **10**, 630–636.
- 2 A. Shafiee, M. Mat Salleh and M. Yahaya, *Sains Malays*, 2011, **40**, 173–176.