Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Synthesis and Properties of *p*-Benzithiahexaphyrin(1.1.1.1.1)s

Pooja Varak, Avisikta Sinha and Mangalampalli Ravikanth* Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India, E-mail: <u>ravikanth@chem.iitb.ac.in</u>

Sr. no	Details	Page no.
2	Figures S1-S35. Characterization (HR-MS and NMR) data for all new compounds.	S2-S36
3	Figures S36. Absorption spectra for compounds 5-8 with and without TFA.	S37
4	Figures S37. Electrochemical data for the compounds 5-8.	S38
5	Figure S38-S39. NICS(0) values for compounds 5-8.	S39-S40
6	Table S1. Selected TD-DFT and calculated oscillator strengths forelectronic transitions of 5 .	S41-S42
7	Table S2, S3. Cartesian coordinates of the optimized (S_0) geometries of the compound 5.	S43-S45

Compound 14b

Department of Chemistry I.I.T. (B)

Figure S1. HR mass spectrum of the compound 14b.

Figure S2. ¹H NMR spectrum of the compound **14b** recorded in CDCl₃ on 500 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S3. ¹³C{¹H} NMR spectrum of the compound 14b recorded in CDCl₃ on 500 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Compound 14d

Figure S4. HR mass spectrum of the compound 14d.

Figure S5. ¹H NMR spectrum of the compound **14d** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S6. ¹³C{¹H} NMR spectrum of the compound **14d** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents[.]

Compound 13b

Department of Chemistry I.I.T. (B)

Counts vs. Mass-to-Charge (m/z)

Figure S7. HR mass spectrum of the compound 13b

Figure S8. ¹H NMR spectrum of the compound **13b** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S9. ¹³C{¹H} NMR spectrum of the compound **13b** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents[.]

Compound 12d

Figure S10. HR mass spectrum of the compound 13d

Figure S11. ¹H NMR spectrum of the compound **13d** recorded in CDCl₃ on 500 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S12. ¹³C{¹H} NMR spectrum of the compound **13d** recorded in CDCl₃ on 500 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents[.]

Compound 10

Figure S13. HR mass spectrum of the compound 10.

Figure S14. ¹H NMR spectrum of the compound **10** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S15. ¹³C{¹H} NMR spectrum of the compound **10** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents[.]

Compound 5

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Figure S16. HR mass spectrum of the compound 5

Figure S17. ¹H NMR spectrum of the compound **5** recorded in CDCl₃ at 298 K on 500 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S18. ¹H NMR spectrum of the compound **5** recorded in CDCl₃ at 223 K on 600 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S19. ¹³C{¹H} NMR spectrum of the compound **5** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents[.]

Figure S20. HR mass spectrum of the compound 6

Figure S21. ¹H NMR spectrum of the compound **6** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S22. ¹H NMR spectrum of the compound **6** recorded in $CDCl_3$ at 223 K on 600 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S23. ¹³C{¹H} NMR spectrum of the compound **6** recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents[.]

Figure S24. HR mass spectrum of the compound 7

Figure S25. ¹H NMR spectrum of the compound 7 recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S26. ¹³C{¹H} NMR spectrum of the compound 7 recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents[.]

Compound 8

Figure S27. HR mass spectrum of the compound 8

Figure S28. ¹H NMR spectrum of the compound **8** recorded in $CDCl_3$ at 298 K on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S29. ¹H NMR spectrum of the compound **8** recorded in CDCl₃ at 223 K on 600 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S30. ¹H NMR spectrum of the compound 8 recorded upon addition of D_2O in CDCl₃ at 25 °C on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S31. Comparison of ¹H NMR spectrum of the compound **8** recorded in CDCl₃ at 298K (a) and 223 K (b) on 600 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S32. ¹H–¹H COSY of compound 8 recorded in CDCl₃ at 25 °C.

Figure S33. ¹H–¹H NOESY of compound 8 recorded in CDCl₃ at 25 °C.

Figure S34. Expanded ¹H–¹H NOESY of compound 8 recorded in CDCl₃ at 25 °C.

Figure S35. ¹³C{¹H} NMR spectrum of the compound 8 recorded in CDCl₃ on 400 MHz NMR instrument. Note: Peaks marked with asterisk (*) are due to residual solvents.

Figure S36. Comparison of absorption spectra of the compounds **5-8** ($8 \cdot 10^{-6}$ M) free base (black line) and in presence of TFA (excess) (red line) recorded in chloroform at room temperature.

Figure S37. Comparison of cyclic voltammograms (black solid lines) along with differential pulse voltammograms (red dotted lines) of the compounds 5-8 recorded in CH_2Cl_2 containing 0.1 M TBAP as the supporting electrolyte and a saturated calomel electrode (SCE) as the reference electrode at scan rates of 50 mV s⁻¹.

Figure S38. NICS(0) values of compound **5** on the optimized structures (B3LYP/6-31G (d, p) (black dots represent the Bq atoms).

Figure S39. NICS(0) values of compounds (a) **6** (b) **7** and (c) **8** on the optimized structures (B3LYP/6-31G (d, p) at the centre of the macrocycle (black dots represent the Bq atoms).

	-		
Wavelength	Osc.		
(nm)	Strength	Major Contributions	Minor Contributions
		H-1->L+1 (10%), HOMO->LUMO	
1161.436	0.0741	(84%)	HOMO->L+1 (3%)
		H-1->LUMO (50%), HOMO->L+1	
1038.126	0.1463	(43%)	HOMO->LUMO (4%)
		H-1->LUMO (44%), HOMO->L+1	
1025.249	0.0787	(52%)	
		H-1->L+1 (83%), HOMO->LUMO	
909.4355	0.4652	(10%)	HOMO->L+3 (4%)
		H-1->L+2 (32%), HOMO->L+3	
815.8409	0.0194	(60%)	H-1->L+1 (4%)
		H-1->L+3 (27%), HOMO->L+2	
795.2238	0.0714	(67%)	H-1->LUMO (2%)
		H-1->L+2 (15%), H-1->L+3 (53%),	HOMO->L+1 (2%), HOMO-
654.6111	0.9761	HOMO->L+2 (19%)	>L+3 (9%)
		H-1->L+2 (50%), H-1->L+3 (15%),	
640.0131	0.5563	HOMO->L+3 (23%)	HOMO->L+2 (9%)
514.2616	0.007	H-2->LUMO (92%)	HOMO->L+4 (3%)
			H-24->L+1 (4%), H-19-
			>LUMO (2%), H-17->LUMO
497.2261	0.0164	H-14->L+1 (15%), H-2->L+1 (20%)	(2%)
			H-16->L+1 (2%), H-14-
		H-2->L+1 (52%), HOMO->L+4	>LUMO (6%), H-14->L+1
493.3089	0.0293	(11%)	(8%)
			H-24->LUMO (5%), H-20-
478.6817	0.0463	H-3->LUMO (33%), H-2->L+1 (14%)	>LUMO (2%)
			H-24->LUMO (5%), H-24-
475.214	0.109	HOMO->L+4 (30%)	>L+1 (4%)
		H-1->L+4 (21%), HOMO->L+5	
469.9721	0.0365	(64%)	HOMO->L+4 (7%)
			H-24->L+1 (2%), H-19-
		H-3->LUMO (46%), HOMO->L+4	>LUMO (3%), H-14->L+1
465.5078	0.2371	(15%)	(2%)
		H-4->LUMO (12%), H-3->L+1	H-3->L+2 (2%), H-1->L+5
459.0785	0.0276	(55%), H-1->L+4 (14%)	(2%), HOMO->L+4 (2%)
			H-6->LUMO (6%), H-5-
			>LUMO (6%), H-4->L+1
449.5733	0.0067	H-4->LUMO (33%), H-1->L+4 (21%)	(7%)
		H-4->LUMO (14%), H-3->L+1	
		(26%), H-2->L+3 (14%), H-1->L+4	
444.0505	0.0074	(24%)	HOMO->L+5 (9%)
			H-6->LUMO (3%), H-5-

0.2087

H-1->L+5 (66%)

435.2431

>LUMO (2%), H-4->LUMO

(3%)

 Table S1. Selected TD-DFT calculated oscillator strengths and compositions of the major

 electronic transitions of 5.

		H-6->LUMO (45%), H-5->LUMO	H-6->L+1 (3%), H-6->L+3
431.0515	0.0057	(24%)	(5%), H-5->L+3 (2%)
		H-5->LUMO (39%), H-4->LUMO	H-6->LUMO (6%), H-5->L+1
424.0486	0.0279	(20%), H-4->L+1 (14%)	(3%), H-2->L+2 (2%)
			H-7->LUMO (5%), H-6-
			>LUMO (4%), H-5->LUMO
420.6961	0.0399	H-4->L+1 (53%)	(9%)
			H-7->LUMO (2%), H-6->L+1
418.2268	0.1484	H-6->LUMO (12%), H-2->L+2 (28%)	(3%), H-5->LUMO (9%)
		H-7->LUMO (17%), H-2->L+2	H-6->LUMO (9%), H-5->L+1
413.6363	0.392	(20%), H-2->L+3 (26%)	(3%), H-3->L+2 (6%)
			H-6->LUMO (4%), H-2->L+2
409.3886	0.1291	H-6->L+1 (37%), H-5->L+1 (37%)	(8%), H-2->L+3 (5%)
			H-5->LUMO (3%), H-5->L+1
406.6094	0.0933	H-7->LUMO (38%), H-6->L+1 (27%)	(7%), H-3->L+2 (4%)
		H-7->LUMO (21%), H-6->L+1	H-4->L+1 (9%), H-2->L+2
403.6573	0.2589	(15%), H-5->L+1 (39%)	(2%)
			H-10->LUMO (4%), H-6-
395.5821	0.0216	H-7->L+1 (68%)	>L+1 (4%), H-3->L+2 (8%)

Table S2. S_0 optimized geometry of the compound **5** at B3LYP/TZVP level of theory and

Empirical Dispersion GD2.

Sum of imaginary frequencies= 0

# Total Energy	(hartree) = -3544.989570
----------------	--------------------------

Atom	X	Y	Z	Atom	X	Y	Z
С	1.021171	-2.98043	1.126557	С	1.180113	3.883352	-2.99709
С	1.384727	-2.99798	-0.24024	С	-4.67143	1.754248	2.064264
С	0.437895	-3.08218	-1.23582	С	-5.64477	0.922047	1.622955
С	-0.94463	-3.12049	-0.94828	С	-5.03687	0.09325	0.592762
С	-1.30906	-3.0585	0.41764	Ν	-3.73132	0.390965	0.448122
С	-0.36117	-3.00992	1.415141	Ν	3.73205	0.456344	-0.64159
С	-1.92656	-3.31594	-1.99967	С	5.07673	0.172143	-0.69621
С	2.015206	-3.03598	2.181325	С	5.648974	1.105945	-1.62734
С	-1.55747	-4.0788	-3.2066	С	4.657936	1.929547	-2.0664
С	-3.23174	-2.86148	-1.87781	0	-2.28556	7.20245	3.908845
С	3.303679	-2.53802	2.008088	С	-1.23765	7.562315	4.80069
С	1.682379	-3.7142	3.447527	0	2.083268	7.338225	-3.90656
С	-0.76648	-5.23552	-3.1161	С	1.056477	7.666164	-4.83426
С	-0.43633	-5.96579	-4.24929	Н	2.43142	-2.97207	-0.501
С	-0.88445	-5.55678	-5.50464	Н	0.759077	-3.13267	-2.26777
С	-1.66347	-4.40803	-5.61307	Н	-2.35354	-3.09595	0.691796
С	-1.99288	-3.67557	-4.47835	Н	-0.6828	-3.00046	2.448068

С	2.10593	-3.18203	4.675068	Η	-0.42165	-5.5601	-2.14294
С	1.818365	-3.82895	5.871213	Н	0.16767	-6.8602	-4.15384
С	1.099812	-5.0215	5.867253	Н	-0.62357	-6.12518	-6.38901
С	0.667143	-5.56033	4.656284	Н	-2.00477	-4.07315	-6.58538
С	0.950559	-4.91254	3.461958	Н	-2.57824	-2.76952	-4.56796
С	4.501369	-3.01481	2.689295	Н	2.649586	-2.24637	4.677593
С	5.556016	-2.45431	2.048371	Н	2.147483	-3.39632	6.808418
С	4.996828	-1.57273	1.030267	Н	0.873916	-5.52529	6.799226
Ν	3.65334	-1.64181	1.034791	Н	0.112144	-6.49073	4.644192
Ν	-3.65697	-1.9059	-0.98274	Н	0.621156	-5.338	2.522977
С	-5.0226	-1.77518	-1.00135	Н	4.51798	-3.74616	3.481336
С	-5.49973	-2.70861	-1.98652	Н	6.605385	-2.62388	2.227299
С	-4.42229	-3.34086	-2.53301	Н	-3.09777	-1.20407	-0.49837
С	5.720482	-0.75896	0.116615	Н	-6.53866	-2.85862	-2.2275
С	-5.72103	-0.87963	-0.19652	Н	-4.42675	-4.11919	-3.27775
С	-7.19837	-0.92702	-0.18063	Н	7.53322	-0.33502	2.091983
С	7.197648	-0.86684	0.040454	Н	9.987435	-0.51338	1.957197
С	8.001722	-0.62048	1.158461	Н	9.682516	-1.56704	-2.17813
С	9.385663	-0.71831	1.078322	Н	7.225961	-1.41049	-2.03441
С	10.01757	-1.06184	-0.11851	Н	-7.31614	-3.04394	0.154425
С	9.215998	-1.29942	-1.23622	Н	-9.77757	-3.12553	0.156644
С	7.83098	-1.20798	-1.15913	Н	-9.91562	1.102364	-0.48574
С	-7.88421	-2.13496	0.00181	Н	-7.45289	1.178384	-0.50796
С	-9.27253	-2.17708	0.008567	Н	11.88322	-0.97819	-1.198
С	-10.0307	-1.01645	-0.15882	Н	12.01008	-0.52753	0.51147
С	-9.34932	0.188841	-0.34027	Н	11.82653	-2.22147	0.052961
С	-7.96116	0.235563	-0.35114	Н	-11.972	-0.24805	-0.69913
С	11.51592	-1.2003	-0.19339	Н	-11.9166	-2.00811	-0.49653
С	-11.5357	-1.05917	-0.11165	Н	-11.8969	-0.95263	0.91707
С	1.059604	1.831083	-0.71536	Н	1.102395	-0.35084	-0.71748
С	0.596848	0.55141	-0.40544	Н	-1.10653	-0.37003	0.612811
С	-0.60943	0.535114	0.301245	Н	-0.45817	3.102652	3.049766
С	-1.11109	1.797169	0.606836	Н	-0.40351	5.251114	4.224398
S	-0.041	3.037082	-0.05161	Н	-4.03187	6.417312	2.253286
С	2.23272	2.264327	-1.41028	Н	-4.08576	4.229487	1.086311
С	-2.29675	2.184801	1.304862	Н	3.905519	4.395713	-1.06641
С	-3.47552	1.440628	1.293533	Н	3.792803	6.602438	-2.19051
С	-2.28298	3.495238	1.994452	Н	0.318921	5.302123	-4.34629
С	-1.24692	3.823079	2.874464	Н	0.436925	3.128667	-3.2217
С	-1.21386	5.041949	3.541026	Н	-4.73807	2.498072	2.841124
С	-2.22726	5.977902	3.317829	Н	-6.666	0.85324	1.961268
С	-3.26395	5.674915	2.429284	Н	3.139296	-0.07166	-0.00127
С	-3.28824	4.452816	1.7823	Н	6.691702	1.131893	-1.89515

С	3.429819	1.56428	-1.40465	Η	4.745351	2.740443	-2.76909
С	2.189801	3.589105	-2.07729	Н	-1.47252	8.566225	5.149429
С	3.130246	4.591966	-1.79562	Н	-1.19228	6.87658	5.653788
С	3.073104	5.826432	-2.41792	Н	-0.26879	7.565576	4.289602
С	2.062479	6.097749	-3.34552	Н	1.25414	8.688466	-5.15126
С	1.110392	5.11697	-3.63441	Н	1.081079	6.999309	-5.70311
				Н	0.068308	7.609168	-4.36492

Table S3. S₀ optimized geometry of the compound 5 at B3LYP/6-31G (d, p) level of theory and

Empirical Dispersion GD2.

Sum of imaginary frequencies= 0

Atom	X	Y	Ζ	Atom	X	Y	Z
С	0.9616	-3.102	1.1601	С	1.1692	3.6738	-3.0048
С	1.3712	-3.1228	-0.1985	С	-4.6944	1.587	1.9893
С	0.4529	-3.211	-1.2275	С	-5.669	0.7688	1.5185
С	-0.9411	-3.2598	-0.9799	С	-5.0461	-0.0577	0.4879
С	-1.3518	-3.2051	0.3779	Ν	-3.7289	0.227	0.3706
С	-0.4327	-3.1423	1.4084	Ν	3.7506	0.2905	-0.5817
С	-1.8928	-3.4556	-2.0653	С	5.097	-0.0115	-0.6047
С	1.9254	-3.1503	2.2496	С	5.6999	0.8992	-1.5453
С	-1.4896	-4.212	-3.2671	С	4.7246	1.726	-2.0216
С	-3.2052	-2.9992	-1.9742	Η	2.4281	-3.092	-0.4257
С	3.2256	-2.6583	2.1072	Η	0.8053	-3.2571	-2.2521
С	1.555	-3.8155	3.5149	Η	-2.4066	-3.2561	0.619
С	-0.6627	-5.3489	-3.164	Η	-0.7862	-3.1318	2.4333
С	-0.3007	-6.0747	-4.296	Η	-0.3183	-5.6625	-2.1841
С	-0.754	-5.6821	-5.5598	Η	0.33	-6.9527	-4.1923
С	-1.5695	-4.554	-5.6804	Η	-0.469	-6.2474	-6.4422
С	-1.9292	-3.824	-4.5483	Η	-1.9147	-4.2329	-6.6588
С	1.973	-3.2827	4.7503	Η	-2.5401	-2.9326	-4.646
С	1.6513	-3.9182	5.9487	Η	2.5383	-2.3568	4.7558
С	0.9028	-5.0981	5.9387	Η	1.9764	-3.4867	6.8908
С	0.476	-5.6375	4.7207	Η	0.6497	-5.5919	6.8723
С	0.7951	-5.0027	3.523	Η	-0.1004	-6.5578	4.7049
С	4.4009	-3.1413	2.8273	Н	0.474	-5.4297	2.5787
С	5.4815	-2.6009	2.2028	Η	4.3871	-3.8657	3.6293
С	4.9555	-1.7255	1.1592	Η	6.5266	-2.7802	2.4099
Ν	3.6083	-1.7743	1.1283	Н	-3.0982	-1.3475	-0.575

Total Energy (hartree) = -3543.865656

Ν	-3.648	-2.0456	-1.0807	Н	-6.5107	-2.9793	-2.4007
С	-5.0124	-1.9105	-1.1309	Н	-4.3727	-4.2481	-3.4126
С	-5.4741	-2.8354	-2.1357	Н	7.4931	-0.598	2.275
С	-4.3833	-3.4716	-2.6621	Η	9.9538	-0.82	2.1865
С	5.7145	-0.9347	0.2416	Н	9.7212	-1.7481	-1.9965
С	-5.7268	-1.0163	-0.3234	Н	7.2565	-1.5545	-1.901
С	-7.2061	-1.0605	-0.3316	Н	-7.3321	-3.1985	-0.1001
С	7.1925	-1.0674	0.1947	Н	-9.8018	-3.2739	-0.1411
С	7.9781	-0.8672	1.3419	Н	-9.9249	0.9936	-0.5745
С	9.3656	-0.9883	1.2878	Н	-7.454	1.0659	-0.5655
С	10.0193	-1.3087	0.0903	Н	11.9135	-1.216	-0.9476
С	9.2364	-1.4999	-1.0556	Н	12.0097	-0.8299	0.7847
С	7.8477	-1.3868	-1.0059	Н	11.8109	-2.5052	0.2573
С	-7.8982	-2.2798	-0.2171	Н	-11.983	-0.3546	-0.9013
С	-9.2906	-2.3188	-0.2338	Н	-11.931	-2.1254	-0.7551
С	-10.047	-1.145	-0.3537	Н	-11.936	-1.1139	0.6942
С	-9.3596	0.0712	-0.4663	Н	1.1184	-0.5349	-0.7829
С	-7.9672	0.1157	-0.4574	Н	-1.1077	-0.5676	0.5534
С	11.5193	-1.4685	0.0424	Н	-0.4267	2.8095	3.0627
С	-11.555	-1.1874	-0.3333	Н	-0.3634	4.9552	4.3332
С	1.0834	1.6487	-0.7323	Н	-3.9852	6.2106	2.4032
С	0.614	0.3632	-0.4493	Н	-4.0567	4.0616	1.1347
С	-0.601	0.3406	0.2578	Н	4.0108	4.1877	-1.2032
С	-1.0907	1.6042	0.5887	Η	3.905	6.3632	-2.4158
S	-0.0069	2.8438	-0.0405	Н	0.3002	5.103	-4.3738
С	2.2729	2.086	-1.4155	Н	0.4028	2.9238	-3.1669
С	-2.2874	1.991	1.2847	Н	-4.7708	2.3238	2.7758
С	-3.4832	1.2687	1.2316	Н	-6.7008	0.7076	1.8338
С	-2.2585	3.2766	2.025	Н	3.1387	-0.2147	0.0623
С	-1.2044	3.5516	2.9199	Н	6.7498	0.9068	-1.7959
С	-1.1597	4.7432	3.6313	Н	4.837	2.5178	-2.7464
С	-2.1758	5.6808	3.4331	Ο	-2.1349	6.9436	4.1769
С	-3.2257	5.452	2.5433	Ο	2.0422	7.1132	-4.1691
С	-3.2592	4.2512	1.8434	С	2.99257	7.97634	-3.9566
С	3.4781	1.3892	-1.3676	Н	3.93172	7.55022	-4.2417
С	2.2293	3.3897	-2.1191	Н	2.81018	8.85746	-4.5356
С	3.2121	4.3778	-1.9106	Н	3.01726	8.23104	-2.9176
С	3.1588	5.5959	-2.5781	С	-3.094	7.80059	3.97938
С	2.104	5.8331	-3.4603	Н	-4.0295	7.35791	4.25121

С

1.1023

4.8846

-3.6805

Η

Н

-2.9238

-3.1175

8.67075

8.07779

4.57833

2.94617

S46