SUPPORTING INFORMATION

Role of the Branched PEG-b-PLLA Chain in Morphological Structures and Thermodynamics for PEG-b-PLLA-g-glucose Copolymers with Different

Architectures

Mingwei Guo1*, Wenjing Wu1, Weixin Wu1, Ruize Wang1, Qinwei Gao1.2*

¹College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;

² Jiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.

*Correspondence: guomw199876@163.com

*Correspondence: gqw@njfu.com.cn

1. Experimental Section

1.1 Gel Permeation Chromatography (GPC).

GPC curves were measured with Malvern Viscotek 270 by using THF as the mobile phase at 40 °C. The flow rate was 1 mL/min, and the injection volume was 100 μ L. A refractive index (RI) detector was employed to characterize the number of average molecular weight (M_n) and molecular weight distribution (D) through conventional calibration by using narrow-distributed polystyrene as an internal standard. The trapping experiments were conducted on Shimadzu LC20-AT Liquid Chromatograph equipped with RI and photodiode array (PDA) detectors.

1.2 Nuclear Magnetic Resonance (NMR).

¹H-NMR spectra of copolymers were acquired using a Bruker 600 spectrometer (Bruker Biospin; AVANCE III HD; Switzerland) at 600 MHz and ambient temperature, with CDCl₃ and D₂O as the solvent and TMS as the object of reference. The sample solutions were prepared by dissolving 10-15 mg of dried polymers in 1 mL of CDCl₃ or D₂O.

1.3 Fourier Transform Infrared Spectroscopy (FTIR).

Fourier transform infrared (FTIR) spectra were measured that were equipped with a DTGS detector. The technique of attenuated total reflectance (ATR) was used for the IR measurements. The spectra were obtained by adding 64 scans at a resolution of 2 cm⁻¹.

1.4 Differential Scanning Calorimetry (DSC).

DSC measurements were performed on a NETZSCH DSC-200F3 differential scanning calorimetry from the instrument (NETZSCH-Gerätebau GmbH, Selb, Germany) equipped with an IC70 intercooler. The sample sealed in an aluminum pan was first heated to 200 °C and held for 3 min to eliminate the thermal history. To investigate the melting behavior, the sample was cooled from 200 to -70 °C and then reheated to 200 °C again under a nitrogen gas flow of 60 mL/min. Both the heating rate and cooling rate were 10 °C/min. To investigate nonisothermal melt crystallization, the sample was cooled from 200 to -70 °C and then reheated to 200 °C again under a nitrogen gas flow of 60 mL/min. Both the heating rate and cooling rate were 10 °C/min.

2. Supplementary Discussion

The degree of polymerization (DP) of MPEG-b-PLLA-OH (1), HO-PLLA-b-PEG-b-PLLA-OH (2), MPEG-b-PLLA-COOH (3), HOOC-PLLA-b-PEG-b-PLLA-COOH (4), 1A-MPELAG (7), 1A-PELAG (8), 3A-MPELAG (9), 3A-PELAG (10), 5A-MPELAG (11), and 5A-PELAG (12) were calculated from ¹H NMR¹, ²:

$$DP_{PLLA}(1) = \frac{A_{5.16 - 5.20}}{A_{5.03 - 5.07}}$$
(Eq S1)
$$A_{3.67} \times \frac{1}{4}$$

$$DP_{PEG}(1) = A_{5.03} - 5.07$$

(Eq S2)

$$DP_{PLLA}(\mathbf{2}) = \frac{A_{5.17 - 5.20}}{A_{5.04 - 5.07} \times \frac{1}{2}}$$

(Eq

$$\frac{A_{3.67}}{A_{5.04-5.07} \times \frac{1}{2}}$$
(Eq
S4)

$$DP_{PLLA}(1) = DP_{PLLA}(3) = DP_{PLLA}(7)$$
(Eq S5)

$$DP_{PEG}(1) = DP_{PEG}(3) = DP_{PEG}(7)$$
(Eq S6)

$$DP_{PLLA}(2) = DP_{PLLA}(4) = DP_{PLLA}(8)$$
(Eq S7)

$$DP_{PEG}(2) = DP_{PEG}(4) = DP_{PEG}(8)$$
(Eq S8)

$$DP_{PLLA}(9) = DP_{PLLA}(1) \times n_g(9)$$
(Eq S9)

$$DP_{PEG}(\mathbf{9}) = DP_{PEG}(\mathbf{1}) \times n_g(\mathbf{9})$$
(Eq S10)

$$DP_{PLLA}(10) = DP_{PLLA}(2) \times n_g(10)$$
(Eq S11)

$$DP_{PEG}(10) = DP_{PEG}(2) \times n_g(10)$$
(Eq S12)

$$DP_{PLLA}(11) = DP_{PLLA}(1) \times n_g(11)$$
(Eq S13)

$$DP_{PEG}(11) = DP_{PEG}(1) \times n_g(11)$$
(Eq S14)

$$DP_{PLLA}(12) = DP_{PLLA}(2) \times n_g(12)$$
(Eq S15)

$$DP_{PEG}(12) = DP_{PEG}(2) \times n_g(12)$$
(Eq S16)

where $A_{5.03-5.07}$ and $A_{5.17-5.20}$ are the integrals at 5.03-5.07 ppm and 5.17-5.20 ppm, respectively.

The number of graft (n_g) of 1A-MPELAG (7), 1A-PELAG (8), 3A-MPELAG (9), 3A-PELAG (10), 5A-MPELAG (11), and 5A-PELAG (12) copolymer was calculated from ¹H NMR:

$$n_{\rm g}(7) = \frac{A_{3.40} \times \frac{1}{3}}{A_{5.38 - 5.41}}$$
(Eq S17)

$$n_{g}(\mathbf{8}) = \frac{A_{5.04-5.07}}{A_{5.29-5.33}}$$
(Eq S18)

$$n_{g}(\mathbf{9}) = \frac{A_{3.40} \times \frac{1}{3}}{A_{5.29-5.33}}$$
(Eq S19)

$$n_{g}(\mathbf{10}) = \frac{A_{2.64} \times \frac{1}{4}}{A_{5.29-5.33}}$$
(Eq S20)

$$n_{g}(\mathbf{11}) = \frac{A_{3.40} \times \frac{1}{3}}{A_{5.29-5.33}}$$
(Eq S21)

$$\frac{A_{2.64} \times \frac{1}{4}}{A_{5.29-5.33}}$$
(Eq S22)

The M_n of MPEG-b-PLLA-OH (1), HO-PLLA-b-PEG-b-PLLA-OH (2), MPEG-b-PLLA-COOH (3), HOOC-PLLA-b-PEG-b-PLLA-COOH (4), 1A-MPELAG (7), 1A-PELAG (8), 3A-MPELAG (9), 3A-PELAG (10), 5A-MPELAG (11), and 5A-PELAG (12) copolymer were calculated from ¹H NMR as follows:

$$M_{\rm n}(1) = 14 + DP_{\rm PEG-1} \times 62 + DP_{\rm PLLA-1} \times 180 - (DP_{\rm PEG-1} + DP_{\rm PLLA-1} - 2) \times 18$$
(Eq S23)

$$M_{\rm n}(2) = DP_{\rm PEG-2} \times 62 + DP_{\rm PLLA-2} \times 180 - (DP_{\rm PEG-2} + DP_{\rm PLLA-2} - 2) \times 18$$
(Eq S24)

$$M_{\rm n}(3) = 14 + DP_{\rm PEG-3} \times 62 + DP_{\rm PLLA-3} \times 180 - (DP_{\rm PEG-3} + DP_{\rm PLLA-3} - 2) \times 18 + 100$$
(Eq S25)

$$M_{\rm n}(4) = DP_{\rm PEG-4} \times 62 + DP_{\rm PLLA-4} \times 180 - (DP_{\rm PEG-4} + DP_{\rm PLLA-4} - 2) \times 18 + 100 \times 2$$
(Eq S26)

$$M_{\rm n}(7) = 14 + DP_{\rm PEG-7} \times 62 + DP_{\rm PLLA-7} \times 180 - (DP_{\rm PEG-7} + DP_{\rm PLLA-7} - 2) \times 18 + 100 \times n_{\rm g}(7) + 260$$
(Eq S27)

$$M_{\rm n}(\mathbf{8}) = DP_{\rm PEG-8} \times 62 + DP_{\rm PLLA-8} \times 180 - (DP_{\rm PEG-8} + DP_{\rm PLLA-8} - 2) \times 18 + 100 \times 2 \times n_{\rm g}(\mathbf{8}) + 260 \times 2$$
(Eq S28)

$$M_{\rm n}(9) = 14 + DP_{\rm PEG-9} \times 62 + DP_{\rm PLLA-9} \times 180 - (DP_{\rm PEG-9} + DP_{\rm PLLA-9} - 2) \times 18 + 100 \times n_{\rm g}(9) + 220$$
(Eq S29)

$$M_{\rm n}(10) = DP_{\rm PEG-10} \times 62 + DP_{\rm PLLA-10} \times 180 - (DP_{\rm PEG-10} + DP_{\rm PLLA-10} - 2) \times 18 + 100 \times 2 \times n_{\rm g}(10) + 220 \times 3$$
(Eq S30)

$$M_{\rm n}(11) = 14 + DP_{\rm PEG-11} \times 62 + DP_{\rm PLLA-11} \times 180 - (DP_{\rm PEG-11} + DP_{\rm PLLA-11} - 2) \times 18 + 100 \times n_{\rm g}(11) + 180$$
 (Eq S31)

$$M_{\rm n}(12) = DP_{\rm PEG-12} \times 62 + DP_{\rm PLLA-12} \times 180 - (DP_{\rm PEG-12} + DP_{\rm PLLA-12} - 2) \times 18 + 100 \times 2 \times n_{\rm g}(12) + 180 \times 5$$
(Eq S32)

where $M_{n,CH2} = 14$, $M_{n,SA} = 100$, $M_{n,ODG} = 260$, $M_{n,MG} = 220$, $M_{n,Glu} = 180$.

The MPEG/PEG weight fraction of PEG-b-PLLA-g-glucose copolymers (ω_{PEG}) were determined from ¹H NMR:

$$\frac{DP_{PEG}(1) \times 62 + 14}{M_n(1)}$$
(Eq S33)
$$\frac{DP_{PEG}(2) \times 62}{M_n(2)}$$
(Eq

S34)

$$\omega_{\text{PEG}}(3) = \omega_{\text{PEG}}(7) = \omega_{\text{PEG}}(9) = \omega_{\text{PEG}}(11) = \frac{DP_{\text{PEG}}(3) \times 62 + 14}{M_{\text{n}}}$$
(Eq S35)

$$\omega_{\text{PEG}}(4) = \omega_{\text{PEG}}(8) = \omega_{\text{PEG}}(10) = \omega_{\text{PEG}}(12) = \frac{M_n}{M_n}$$
(Eq

S36)

The PLLA weight fraction of PEG-b-PLLA-g-glucose copolymers (ω_{PLLA}) were determined from ¹H NMR:

$$\omega_{\text{PLLA}}(1) = \frac{DP_{\text{PLLA}}(1) \times (180 - 18)}{M_{\text{n}}(1)}$$

(Eq S37)

$$\omega_{PLLA}(2) = \frac{DP_{PLLA}(2) \times (180 - 18)}{M_{n}(2)}$$
(Eq S38)

$$\omega_{PLLA}(3) = \omega_{PLLA}(7) = \omega_{PLLA}(9) = \omega_{PLLA}(11) = \frac{DP_{PLLA}(3) \times (180 - 18)}{M_{n}}$$
(Eq S39)

$$\omega_{PLLA}(4) = \omega_{PLLA}(8) = \omega_{PLLA}(10) = \omega_{PLLA}(12) = \frac{DP_{PLLA}(4) \times (180 - 18)}{M_{n}}$$

The crystallinities of X_{PEG} and X_{PLLA} in PEG-b-PLLA-g-glucose copolymers were calculated as:

$$X_{\rm PEG} = \frac{\Delta H_{m,\rm PEG}}{\omega_{\rm PEG} \times 197 \,\rm J/g}$$

(Eq S41)

$$X_{\rm PLLA} = \frac{\Delta H_{m,\rm PLLA}}{\omega_{\rm PLLA} \times 94 \,\rm J/g}$$

(Eq S42)

The $\Delta H_{m,PEG}$ and $\Delta H_{m,PLLA}$ (fusion enthalpy) were calculated from the DSC second heating thermograms, and X_{PEG} and X_{PLLA} were referred to their weight fraction. 94 J/g is the reported value of fusion enthalpy for 100% ($\Delta H0$ m) crystallized PLLA and 197 J/g is that for PEG^{3, 4}.

3. Supplementary Figures and Tables

Figure S1. ¹H NMR spectra of MPEG-b-PLLA-OH (1) in CDCl₃.

Figure S2. ¹H NMR spectra of HO-PLLA-b-PEG-b-PLLA-OH (2) in CDCl₃.

Figure S3. ¹H NMR spectra of MPEG-b-PLLA-COOH (3) in CDCl₃.

Figure S4. ¹H NMR spectra of HOOC-PLLA-b-PEG-b-PLLA-COOH (4) in CDCl₃.

Figure S5. ¹H NMR spectra of ODG (5) in CDCl₃.

Figure S6. ¹H NMR spectra of MG (6) in D_2O .

Figure S7. ¹H NMR spectra of 1A-MPELAG (7) in CDCl₃.

Figure S8. ¹H NMR spectra of 1A-PELAG (8) in CDCl₃.

Figure S9. ¹H NMR spectra of 3A-MPELAG (9) in CDCl₃.

Figure S10. ¹H NMR spectra of 3A-PELAG (10) in CDCl₃.

Figure S11. ¹H NMR spectra of 5A-MPELAG (11) in CDCl₃.

Figure S12. ¹H NMR spectra of 5A-PELAG (12) in CDCl₃.

Figure S13. FTIR spectra of D(+)- α -Glucose, Monoacetone Glucose (5), and Diacetone-D-Glucose (6).

Figure S14. FTIR spectra of MPEG, PEG, PLLA, MPEG-b-PLLA-COOH (**3**), and HOOC-PLLA-b-PEG-b-PLLA-COOH (**4**).

	weight fraction		NMR data of samples				
sample	$\omega_{\text{PEG}}^{a}(\%)$	$\omega_{\text{PLLA}}^{b}(\%)$	DP _{PLLA} ^c	$\mathrm{DP}_{\mathrm{PEG}}^{d}$	ng ^e	$M_n^f(\mathbf{g}\cdot\mathbf{mol}^{-1})$	Yield ^g (%)
1	24.73	75.27	41	49	—	8848	92.4
2	13.70	86.30	82	48	_	15432	90.0
3	24.30	74.43	41	49	_	8948	95.2
4	13.63	85.21	82	48	_	15632	97.5
7	23.61	72.33	41	49	1	9208	86.2
8	13.19	82.47	82	48	1	16152	88.7
9	23.90	73.23	123	147	3	26964	80.6
10	23.60	72.44	142	170	3	31780	84.1
11	24.20	74.13	205	245	5	44720	79.3
12	23.35	72.58	229	271	5	51138	82.9

Table S1. The molecular characterization of PEG-b-PLLA-g-glucose copolymers.

^{*a*}The MPEG/PEG weight fraction of PEG-b-PLLA-g-glucose copolymers (ω_{PEG}) was calculated by Eq S33-S36. ^{*b*}The PLLA weight fraction of PEG-b-PLLA-g-glucose copolymers (ω_{PLLA}) was calculated by Eq S37. ^{*c*}The average degree of polymerization (DP_{PLLA}) of PLLA, calculated from ¹H NMR. ^{*d*}The average degree of polymerization (DP_{PEG}) of MPEG/PEG, calculated from ¹H NMR. ^{*e*}The number of graft (n_g) of copolymers, calculated from ¹H NMR using Eq S17-S22. ^{*f*}The number-average molecular weight (M_n) of copolymers was calculated by ¹H NMR from Eq S23-S32. ^{*g*}The yield of copolymers were calculated as follows: yield(%)= M_P / (M_R - M_{water})×100, where M_P , M_{water} , and M_R are the weight of Products, Water, and Reactants, respectively.

4. References

- 1. J. L. Espartero, I. Rashkov, S. M. Li, N. Manolova and M. Vert, *Macromolecules*, 1996, **29**, 3535-3539.
- 2. G. Wu, S. C. Chen, Q. Zhan and Y. Z. Wang, *Macromolecules*, 2011, 44, 999-1008.
- 3. W. Xie, C. Jiang, X. Yu, X. Shi, S. Wang, Y. Sun, M. Yin and D. Wu, *ACS Applied Polymer Materials*, 2021, **3**, 6078-6089.
- 4. P. Pan, L. Han, J. Bao, Q. Xie, G. Shan and Y. Bao, *The Journal of Physical Chemistry B*, 2015, **119**, 6462-6470.