Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Electronic Supplementary Information

In situ synthesis of CoFe-LDH on biochar for peroxymonosulfate activation toward sulfamethoxazole degradation: Cooperation of radical and nonradical pathways

Manjun Fu, Juntao Yan, Bo Chai*, Guozhi Fan, Deng Ding, Guangsen Song

School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China

* Corresponding author: Bo Chai

Email address: willycb@163.com (B. Chai)

Tel and Fax: +86-27-8394-3956

Title of published journal: New Journal of Chemistry

Text S1 Materials and reagents

Rape straw was obtained from agricultural waste on a nearby farm (Hubei, China). Sulfamethoxazole (SMX), PMS (2KHSO₅·KHSO₄·K₂SO₄), humic acid (HA), *p*-benzoquinone (*p*-BQ), 5,5-dimethyl-1-pyrrolineN-oxide (DMPO) and 2,2,6,6-tetramethylpiperidine (TEMP) were purchased from Shanghai Aladdin Reagent Co., Ltd. Zinc chloride (ZnCl₂), hydrochloric acid (HCl), cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O), ferric nitrate nonahydrate (Fe(NO₃)₃·9H₂O), sodium hydroxide (NaOH), sodium carbonate (Na₂CO₃), sodium chloride (NaCl), sodium dihydrogen phosphate (NaH₂PO₄), sodium hydrogen carbonate (NaHCO₃), sodium sulfate (Na₂SO₄), L-histidine (L-His, BR), furfuryl alcohol (FFA), ethanol (EtOH), methanol (MeOH), L-ascorbic acid (L-AA) and tert-butyl alcohol (TBA) were bought from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All of the chemical reagents utilized in this research were analytical grade and had not been purified further.

Text S2 Analytical methods

A Purkinje General TU-1810 spectrophotometer was used to determine the SMX concentration at 266 nm. The EPR tests were carried out to explore the presences of reactive oxygen species (ROS) by an EPR 200M spectrometer. The concentrations of cobalt and iron leaching in the system were detected by AA320N atomic absorption spectroscopy. A liquid chromatography-mass spectrometry system (LC-MS, Ultimate 3000 UHPLC-Q Exactive, Thermo Scientific, US) was used to ascertain he degradation intermediates of SMX. Total organic carbon (TOC) was evaluated by a TOC-2000 analyzer (Shanghai, Metash) to detect the mineralization degree during degradation reaction.

Text S3 Electrochemical measurement

The electrochemical impedance spectroscopy (EIS) and current-time curves of as-prepared samples were performed on an electrochemical workstation (CHI 760E, Shanghai Chenhua, China) in a typical three-electrode system with the glassy carbon electrode (GCE), the Ag/AgCl electrode, and Pt foil as the working, reference and counter electrode, severally. Besides, 0.1 M Na₂SO₄ solution was used as the electrolyte. Specifically, the working electrode preparation process was as follows: the naked GCE was initially polished with alumina suspension (0.05 μ m) to attain a brilliant surface prior to modification. The polished GCE was successively rinsed in deionized water and ethanol. Subsequently, 3 mg of catalyst was uniformly scattered in 300 μ L of Nafion and 200 μ L of ethanol solution. 10 μ L of sample suspension was dripped onto the polished GCE surface and then dried under infrared light.

Figure S1. The XRD patterns of CoFe-LDHs with different Co:Fe mole ratios.

Figure S2. The pore size distribution of as-prepared samples.

Figure S3. The effect of Co:Fe mole ratio in pristine CoFe-LDH on SMX degradation (inset: the corresponding pseudo-first-order rate constant)

Figure S4. The adsorption performance of the catalysts on SMX. Experimental conditions: $[SMX] = 30 \text{ mg} \cdot \text{L}^{-1}$,

 $[Catalyst] = 0.25 \text{ g} \cdot \text{L}^{-1}$

Figure S5. The zeta potential of the BC/Co₁Fe₁-LDH-4 catalyst

Figure S6. The effect of leaching metal ions from the first cycle on the degradation of SMX ($[Co^{2+}] = 8.01 \text{ mg} \cdot \text{L}^{-1}$,

 $[Fe^{3+}] = 0.37 \text{ mg} \cdot L^{-1}$)

Figure S7. Mass spectra of SMX degradation intermediates.

Samples	BET surface are	Average pore radius	Cumulative volume
	$(m^2 g^{-1})$	(nm)	of pores (cm ³ g ⁻¹)
BC	1314.77	13.08	0.52
Co ₁ Fe ₁ -LDH	105.73	72.86	0.40
BC/Co ₁ Fe ₁ -LDH-4	748.41	16.12	0.43

Table S1. BET surface area and pore structure parameters of catalysts.

Table S2. The Co and Fe ions leaching concentration of BC/Co_1Fe_1 -LDH-4 catalyst and Co_1Fe_1 -LDH in the four recycling tests

	Co leaching concent	tration (mg·L ⁻¹)	Fe leaching concentration (mg·L ⁻¹)	
	BC/Co ₁ Fe ₁ -LDH-4	Co ₁ Fe ₁ -LDH	BC/Co ₁ Fe ₁ -LDH-4	Co ₁ Fe ₁ -LDH
Run 1	8.01	12.02	0.37	0.65
Run 2	3.03	11.87	0.27	0.62
Run 3	2.40	10.48	0.24	0.55
Run 4	2.31	10.24	0.19	0.29

Table S3. Intermediates detected by LC-MS during SMX degradation by BC/Co₁Fe₁-LDH-4/PMS system.

Products	m/z	Formula	Proposed structure
SMX	254	C ₁₀ H ₁₁ N ₃ O ₃ S	$H_2N \longrightarrow O \qquad H_2N \longrightarrow CH_3$ $SMX m/z=254 C_{10}H_{11}N_3O_3S$

PA-1	283	C ₁₀ H ₉ N ₃ O ₅ S	$O_2N \longrightarrow O_2N \longrightarrow O_1 O_2N \longrightarrow O_2$
PA-2	124	C ₆ H ₅ NO ₂	O_2N PA-2 m/z=124 $C_6H_5NO_2$
PB-1	288	C ₁₀ H ₁₃ N ₃ O ₅ S	$H_{2}N \longrightarrow O \qquad HO \qquad CH_{3} \qquad HO \qquad OH \qquad PB-1 m/z=288 C_{10}H_{13}N_{3}O_{5}S$
PB-2	246	$C_8H_{11}N_3O_4S$	$H_2N \longrightarrow O \qquad O$
PBC-1	396	C ₁₄ H ₁₅ N ₅ O ₇ S	$H_{3}C \xrightarrow{OH} N = N \xrightarrow{O} I \xrightarrow{O} OH OH$ $H_{3}C \xrightarrow{O} N = N \xrightarrow{O} I \xrightarrow{O} OH OH$ $PBC-1 m/z = 396 C_{14}H_{15}N_{5}O_{7}S$
PC-1	98	C ₄ H ₆ N ₂ O	$H_2N \qquad N \\ N \\ PC-1 m/z=98 C_4H_6N_2O$
PC-2	158	C ₆ H ₇ N ₂ O ₂ S	$H_2N \longrightarrow SH$ H_2N

PC-3	114	$C_4H_6N_2O_2$	$H_2N \xrightarrow{CH_3} CH_3$ $PC-3 m/z=114 C_4H_6N_2O_2$
PC-4	227	$\mathrm{C_8H_{12}N_4O_4}$	$H_{3}C \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{OH} \xrightarrow{CH_{3}} CH_{3}$ $PC-4 m/z=227 C_{8}H_{12}N_{4}O_{4}$
PD-1	274	$C_{10}H_{17}N_{3}O_{4}S$	$H_2N \longrightarrow O H_2 H_2N \longrightarrow O H_2 H_1N H_2 H_2N \longrightarrow O H_2 H_1N H_2 H_2N H_2 H_1N H_2 H_2N H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_2$