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Text. 1S. Experimental reagent and materials 

Iron (II)-chloride tetrahydrate (FeCl2 · 4H2O), Iron (III)-chloride hexahydrate (FeCl3 · 6H2O), 

hydrochloric acid (HCl, 37%), sodium hydroxide solution (NaOH, 1.5 M), ethanol (EtOH), 

ammonia solution (NH3, 25%), tetraethyl orthosilicate (TEOS, Si(OC2H5)4), N-(2-Aminoethyl)-3-

aminopropyltrimethoxysilan (APTS, H2N(CH2)2NH(CH2)3Si(OCH3)3), acetic acid (CH3CO2H), 

chitosan ,glutaraldehyde solution (OHC(CH2)3CHO, 25%) and CuCl2.2H2O were obtained from 

Merck, Fluka and Sigma-Aldrich Co., Ltd., and utilized without futher purification for MS/(AgC)-

Cu NP preparation. Potassium peroxymonosulfate (Oxone, PMS, KHSO5.0.5KHSO4 · 0.5K2SO4), 

methylene blue (MB), methylene orange (MO), bisphenol A (BPA), N,N-

dihydroxypyromellitimide (NDHPI, C10H6N2O6) and Cyclohexene (C6H10) were purchased from 

Sigma-Aldrich and utilized for dye degradation and aerobic oxidation processes without further 

purification. 
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Text. 2S. Characterization of biocomposite 

the instrument for characterization and analyze of products are mentioned blow: ICP-AES (Perkin-

Elmer ICP/6500); AAS (Analytik Jena-nov AA300); ICP-OES (SPECTRO ARCOS, Germany); 

Brunauer–Emmett–Teller (BET; BELSORP MINI II, BEL, Japan);  TEM (Philips 501 

microscope,80 kV voltage); SEM (Tecnai F30TEM operating at 300 Kv); FT-IR (Shimadzu 

Varian 4300 Fourier Transform Infrared spectrometer, KBr pellets); UV-DRS (UV- 160 A, 

Shimadzu, Japan) TGA (Perkin-Elmer TG-DTA 6300, heating rate of 15 °C/min); XPS 

(PerkinElmer PHI 5000CESCA system, B.P= 9-10 Torr; XRD (Bruker D8 Advance 

diffractometer, CuKa radiation, 40 Kv, 20 mA) & VSM ( BHV-55 VSM). LC-MS (HP 6890/5973 

GC/MS, Shimadzu GC-16A gas chromatograph (GL-16, 5 m -3 mm OV-17 column, 60–220 °C 

(10 °C/min), Inj. 230 °C, Det. 240 °C). 
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Text 3S. Analytical methods

The dosage of HEPES was determined using High-Performance Liquid Chromatography 

(HPLC) system equipped with an Amaze TH column (100 mm×3.0 mm, 3um, 100 A). A binary 

mixture of acetonitrile/ water/ammonium format at a certain ratio was applied as mobile phase. 

The flow rate of eluent was set at 0.6 mL/min, while the injection volume was set at 3.0 mL, 

thermostatted at 30 ºC. Furthermore, Methyl orange (MO), Methylene Blue (MB), and Bisphenol 

A (BPA) were measured at 466 nm, 660 nm, and 265 nm, respectively, by a spectrometer (UV-

1800 PC, Shanghai Mapada Spectrum Instrument Co.,LTD).  The leached concentrations of Cu 

ions were quantified by inductively coupled plasma atomic emission spectroscopy (ICP-AES, 

Perkin Elmer, Optima 8000, USA). The total organic carbon was measured by a TOC analyzer 

(Muti N/C 2000, Germany).

PMS decomposition measurement: The PMS concentrations were measured with a 

modified colorimetric method using potassium iodide by spectrophotometer. At selected time 

intervals, 0.1 mL of TC solution was periodically withdrawn with a syringe and dispersed into a 

prepared 4.9 mL KI:NaHCO3 stock solution (4.15:1 w/w in 100 mL ultrapure water). After 

reaction for 5 min, the concentration of PMS was examined by observing the absorbance maxima 

peaks of PMS at 352 nm. 

Reusability test: The spent MS-(AgC)/Cu was separated with an external magnet and washed 

with water/EtOH under ultrasonic conditions, and then reutilized in the next consecutive cycles.
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Table 1S. Chemical structures and capabilities of the selected pollutants.

Sample λmax
(nm)

Mw 
(g/mol)

Name (IUPAC) Molecular structure

Methylene 
orange
(MO)

466 327.33 Sodium 4-{[4-
(dimethylamino)phenyl]diazenyl}benzene-

1-sulfonate

N

N
N

S
O

O
O-

Methylene 
blue

(MB)

664 319.85 [7-(Dimethyl- amino)phenothiazin-3-
ylidene]-dimethyla- zanium chloride

N

S NN

Bisphenol A
(BPA)

265 228.29 4-[2-(4-hydroxyphenyl)propan-2-
yl]phenol

OHHO
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Table 2S. Identified HEPES degradation intermediates in the PMS/MS-(AgC)/Cu.

[In] Name ESI (+) 
MS (m/z)

Structure Differe
nces 
from

HEPES

P1 1,4-diethylpiperazine 208.09
NN S

O

O
HO

-CH2
-OH

P2 1,4-diethylpiperazine 142.15 NN

-OH
-SO3H

P3 1-ethyl-4-
methylpiperazine

128.13 NN

-CH2
-OH

-SO3H

P4 Piperazine 86.08 NN
-2 C2H4

-OH
-SO3H

P5 2-(4-ethylpiperazin-1-
yl)ethane-1-sulfonic acid

222.10 NN S

O

O
HO

-OH

P6 2-(4-
methylpiperazin-1-
yl)ethane-1-sulfonic acid

208.09
NN S

O

O
HO

-CH2
-OH

P7 2-(4l2-piperazin-1-
yl)ethane-1-sulfonic acid

194.07
NN S

O

O
HO

-C2H4
-OH
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Table 3S. Comparison of catalytic activity of MS-(AgC)/Cu whit various catalytic systems.

1 Fenton sludge was converted into magnetic sludge-based biochar.
2 Magnesium (II) porphyrin with the ligand hexamethylenetetramine.
3 Zeolite encapsulated Fe nanocatalyst.
4 Layered double hydroxide(LDH).
5 Zeolitic imidazolate framework-67(ZIF-67).

Pol. Catalytic System t
(min)

Oxidant
[c]

Efficiency
(%)

pH [Ref]

MB SBMC [0.4 g/L]1 3 H2O2 [39 mmol/L] 98.5 3.00 [1]
Magnesium porphyrin [5.0 mg] 2 25 H2O2 [4.0 mL] 82.0 6.00 [2]
Fe@S-1 [50 mg] 3 30 H2O2 [4.0 mL] 100 2.00 [3]
MgCoAl-LDH  [1.0 mg]4 40 PMS [1.0 mmol/L] 100 6.00 [4]

CuFe2O4@ZIF-67  [100 mg/L]5 30 PMS [100 mg/L] 98.9 6.40 [5]
CuCo-ZIF [50 mg/L]6 100 H2O2 [0.1 mol/L] 98.0 3.00 [6]
Co3O4/CoO/NaHSO3 [0.6 g/L] 40 NaHSO3[2.0 g/L] 90.7 6.38 [7]
Ce-doped UiO-67- 400/H2O2 [1.0 g/L]7 30 H2O2 [7 mmol/L] 94.1 3.00 [8]
Fe41Co7Cr15Mo14C15B6Y2 [0.5 g/L] 30 H2O2 [4 mmol/L] 98.0 5.00 [9]
Mg/Co (OH)2 [1.0 g/L] 120 H2O2 [10 mg/L] 99.6 >7.0 [10]
NbCeOx [20 mg]8 60 H2O2 [200 µL] 83.0 5.10 [11]
FeCo2O4-N-C-400 [0.010 g]9 10 PMS  [0.5 g/L] 100 Natural [12]
FeMnO3 [0.2 g/L] 60 PMS [2.0 g/L] 98.0 6.70 [13]
Fe3O4@MnO2 [300 mg/L] 30 PMS [20 mM] 100 7.94 [14]
CS-Fe [10000 mg/L]10 40 H2O2 [1200 mg/L] 99.0 Natural [15]
MS-(AgC)/Cu [0.5 g/L] 60 PMS [1.5 mM] 97.3 7.00 This work

MO MOP11 20 H2O2 [2.0 mL] 98.0 1.70 [16]
CC-MIL-10-DCD-1000 [0.1 g/L]12 30 PMS [0.3 mM] 99.0 7.00 [17]
ACP-800 [0.5 g/L]13 80 PMS [1.6 mM] 100 3.50 [18]
FOC [1.0 mg/mL]14 50 H2O2 [2.0 M] 100 3.00 [19]
Ni/HAP/CoFe2O4 [0.04 mg]15 90 H2O2 [1.0 mL] 90.0 3.50 [20]
FeCo-MCM-41[0.2 g] 60 PMS [0.075 mM] 95.65 5.60 [21]
CuO NLs [7.0 mL,53 μg/ml]16 H2O2 [1.0 mL] 100 - [22]
Cu2O-Cu/C 20 H2O2 [0.03 M] 100 3.00 [23]

MS-(AgC)/Cu [0.5 g/L] 50 PMS [1.5 mM] 98.0 7.00 This work
BPA CuFe2O4-CoFe2O4 [20 mg/L] 100 PMS [0.3 g/L] 99.3 7.01 [24]

13%-Mn-FeBC [0.5 g/L]17 120 PMS [4.0 mM] 100 12.0 [25]
CuO/Cu2O [500mg/L]18 10 PMS [150mg/L] 99 11.0 [26]
CuO-CN [0.5 g/L]19 30 PMS [100 mg/L] 80 - [27]
MS-(AgC)/Cu [0.5 g/L] 30 PMS [1.5 mM] 99.1 7.00 This work

HEPES OBW/HP@CoNP [50 ppm]20 20 PMS [1.25 mM] 98 7.40 [28]
MS-(AgC)/Cu [0.5 g/L]    30 PMS [1.5 mM] 98.3 7.00 This work
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6 Zeolitic imidazolate framework(ZIF).
7 Ce-doped MOF (Metal–organic framework)/calcination temperature of catalyst 400 °C.
8 Mixed niobium-cerium oxide.
9 Calcined nitrogen-containing carbon//FeCo2O4 composites.
10 Fenton chitosan-Fe catalyst.
11 Magnetite nanoparticles (Fe3O4-NPs)/orange peel.
12 Dicyandiamide immobilized on the surface of carbon cloth.
13 Activated carbon using pistachio.
14 Fe3C/Fe3O4/C.
15 Hydroxyapatite.
16 Cupric oxide nanoleaves.
17 x-Mn-FeBC, where × represents the mass percentage of KMnO4 to DS (dry sludge).
18 A novel B-doped CuO/Cu2O composite material.
19 Copper oxide/graphitic carbon nitride.
20 Ostrich bone waste/Hydrogen peroxide.



9

Table4S. Comparison of catalytic activity of MS-(AgC)/Cu in selective aerobic oxidation of 
cyclohexene whit various catalytic systems.

1Heteropolyacid-based poly ionic liquids.
2Nanorods.
3 Catalysts consisting of Cu single atoms anchored on graphitic carbon nitride.
44, 5-diazofluorene-9-one (DAFO).
5 {[La2Cu3(µ-H2O)(ODA)6(H2O)3].3H2O}n.
6{[La2Co3(ODA)6(H2O)6].12H2O}n / m; i: flower (FL).
7 Flowers (FLs).
8 Silver cyanide.
9 Ti-containing Periodic Mesoporous Organosilica (PMO).
10 Ruthenium- Nanofibers (NFs).

                      S, %No. Catalytic System        X ,%

CY-epoxy CY-ol            CY-one

[Ref]

1 CoFe2O4,  80 ◦C, 6h, CH3CN, O2  63.0      8.0    9.0    25.0 [29]
2 PVDA1-PMo 1, 130◦C, 7h, CH3CN, O2 85.7      -     -    51.9 [30]
3 Ti-Beta zeolite, 59.85 ◦C, 2 h, CH3CN, H2O2 27.9 [31]
4 MoCeNR2, 80◦C, 2 h, Toluene, TBHP 98.9    97.3   0.90    1.80 [32]
5 Cu-g-C3N4

3,  75 ◦C, 6 h, CH3Cl, O2 82.0    55.0 [33]
6 Cu-MOF-74, 25◦C, 24 h, O2 35.0      -  25.0    61.0 [34]
7 Co-MOF-74, 25◦C, 24h, O2 31.0      -  35.0    59.0 [34]
8 SBA15. DAFO.Pd(II)4,60 ◦C,12 h,CH3CN, H2O2 89.3      -  9.10    16.3 [35]
9 LaCuODA5,  75 ◦C, 24h,  O2 67.0      -  40.0    55.0 [36]
10 LaCoODA6, 75 ◦C, 24 h, O2 85.0      -  25.0    75.0 [36]
11 CuO FL27,  80◦C, 24 h, CH3CN, O2 97.6      -    -    64.1 [37]
12 ZnMOF-74,  80◦C, 4 h, O2 66.5   12.5  65.4    13.9 [38]
13 NiMOF-74, 80◦C, 4 h, O2 59.0   8.70  74.3    13.3 [38]
14 CoMOF-74, 80◦C, 4 h, O2 52.3   18.9  29.4    22.2 [38]
15 Co(II)-L@nano-SiO2, 75◦C, 8 h, CH3CN, O2 61.0   6.50  10.3    46.9 [39]
16 AgCN8, 60 ◦C 20 h, CH3CN, H2O2 ~100   76.0     -       - [40]
17 Ti-PMO-S10 9,70 ◦C, 25 h, CH3CN, TBHP 30.5   93.8     -     3.2 [41]
18 Ru/TiO2 NFs 10, 75 ◦C, 4.5 h, O2 95.0   7.00  11.0    80.0 [42]
19 LaCoO3,  80◦C, 6 h, TBHP /O2 89.8     -     -    47.8 [43]
20 Co5Ce5/ γ-Al2O3, 80 ◦C, 6 h, O2 84.0     -  30.0    38.0 [44]
21 MS-(AgC)/Cu, NDHPI, 80 ◦C, ACN, O2 91.8   5.40  9.10    85.3 This work
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Table 5S. Commercial price used for fabrication of MS-(AgC)/Cu.

Material CAS. Number        V (mL) or W (g)        Price ($.g-1)
FeCl2·4H2O 13478-10-9             0.20 g 0.020
FeCl3·6H2O 10025-77-1             0.40 g 0.063
HCl Dr Mojallali,Co.  3.0 mL 0.003
NaOH Arvand parak, Co.             6.00 g 0.053
NH4 OH Dr Mojallali,Co.  4.0 mL 0.013
EtOH Simin Tak, Co.             40 mL 0.030
TEOS 78-10-4  0.6 mL 0.050
APTS 13822-56-5  0.1 mL 0.050
Chitosan 9012-76-4             0.10 g 0.017
AcOH 64-19-7  0.4 mL 0.030
Glutaraldehyde Simin Tak, Co.  2.0 mL 0.040
Cu(OAc)2 6156-78-1 0.25 g 0.017

Total price ($.g-1) 0.386
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Table 6S. Screening data for the cost of the various systems for degradation of 1m3 HEPES.

No. Pollutant/m3 Catalytic system     Cost ($ /m3) [Ref]
1 Tetracycline PS+γ-Fe2O3-CeO2     0.106 [45]
2 Ketoprofen PS+Fe2+                                                                 0.517 [46]
3 Ketoprofen PS+Thermal                                                       44.41 [46]
4 Ketoprofen PS+UV                                                          0.176 [46]
5 HEPES PMS+MS-(AgC)/Cu                                 27.57     This work
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Fig 1S. EDS spectrum of MS-(AgC)/Cu.
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Fig.2S. Effect of quenching scavengers on degradation efficiency (%) for HEPES degradation 
[[MS-(AgC)/Cu]o= 0.5 g/L, [HEPES]o= 10 mg/L, pH = 7.0, T= 25 oC, [PMS]o= 1.5 mM)]. 
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Fig.3S. Effect of quenching scavengers on The reaction rates of HEPES degradation [[MS-
(AgC)/Cu]o= 0.5 g/L, [HEPES]o= 10 mg/L, pH = 7.0, T= 25 oC, [PMS]o= 1.5 mM)]. 
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Fig.4S. XPS spectrum of Cu2p in (A) fresh, and (B) used MS-(AgC)/Cu.
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Fig. 5S. Long-term stability of MS-(AgC)/Cu in degradation of HEPES [[MS-(AgC)/Cu]o= 0.5 
g/L, [HEPES]o= 10 mg/L, pH = 7.0, T= 25 oC, [PMS]o= 1.5 mM)].
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Fig. 6S. Selected TEM images of used MS-(AgC)/Cu for (A) four times, and (B) seven times in 
HEPES degradation.
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