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Figure S1. The EDS spectra and the Cr elemental mapping image of the MOF@Clay composite.
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Figure S2. The elemental mapping image of the 3D-MOF@Clay architecture.
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Figure S3. TGA curve of the MOF@Clay composite.
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Figure S4. Zeta-potential of 3D-MOF@Clay architecture.
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Figure S5. The chemical structure and molecular size of MO and DR31 dyes.
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Figure S6. Comparison of dye removal efficiency of 3D-CS and 3D-MOF@Clay architectures 

toward (a) MO and (b) DR31 dyes. 
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ES1: Adsorption isotherm

Adsorption isotherms were obtained through the fitting of experimental data with Langmuir, 

Freundlich, Temkin, and Dubinin-Radushkevich (DRK) isotherm models. The non-linear form of 

isotherm models are expressed by the following equations [1, 2]:
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where eC (mg/L) is the dye concentration at equilibrium. LK  (L/mg) and FK  ((mg/g)(L/mg)1/nF) 

are the Langmuir and Freundlich constants, respectively. 1/ n  is related to the adsorption 

intensity [3, 4]. B (J/mol) and TK (L/mg) are the Temkin constants.  (mol2/kJ2) and  (kJ/mol) 

are also the adsorption energy and adsorption potential constants, respectively [5]
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Figure S7. The plots of non-linear Langmuir, Freundlich, Temkin, and Dubbin-Radushkevich 

isotherm models for adsorption of (a) DR31 and (b) MO dyes on the 3D-MOF@Clay 

architecture (pH = 4, 3D-MOF@Clay = 2.4 g, contact time = 60 min).
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ES2: Adsorption kinetics

The kinetics of dye adsorption on 3D-MOF@Clay architecture were evaluated by non-linear 

pseudo-first-order, non-linear pseudo-second-order, and intraparticle diffusion models based on 

the following equations [6, 7]:
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where  and  are adsorption capacity at the time  and equilibrium, respectively.
 

 (1/min), tq eq t 1k

and  (g/mg.min) are also the rate constant of pseudo-first-order and pseudo-second-order 2k

models, respectively.
 

 (mg/g.min0.5) and  are the rate constant of the IPD model and the PK I

thickness of the boundary layer, respectively.
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Figure S8. The plots of (a,b) non-linear PFO and PSO models, and (c,d) intraparticle diffusion 

model for adsorption of (a,c) DR31 and (b,d) MO dyes on the 3D-MOF@Clay architecture (pH 

= 4, dye concentration= 60 ppm, 3D-MOF@Clay = 2.4 g).
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