Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Material (ESI) for New Journal of Chemistry.

Supporting Information

Mechano-catalysis boosts glycolaldehyde conversion into

tetroses over a new Zn-COF catalyst

Junxia Yang,^a Xu Fang,^a Guoqing Ren,^{a,*} Tie Yu^{a,*}

a: Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China

Table of Content

1.	Experiments	2
2.	Method	2
3.	Figures	3
4.	Tables	5
5.	References	.10

1. Experiments:

1.1 Materials preparation

All chemicals were purchased from commercial source. Pyridine, ethanol, tetrahydrofuran (THF), acetone, acetic acid, methanol and triethylamine were purchased from Sinopharm Chemical Reagent Co., Ltd. 1,4-Dioxiane, 1,2-Diaminocyclohexane and N,Obis(trimethylsilyl)triflfluoroacetamide (BSTFA) (99%) were bought from Macklin Chemical Reagent. Glycolaldehyde dimer was purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. O-ethylhydroxylamine hydrochloride (98%), phenyl-β-D-glucopyranoside (>99%) were 5,5',5",5"'-((methanetetrayltetrakis(benzene-4,1purchased from Bidepharm or TCI. diyl))tetrakis(ethyne-2,1-diyl))tetrakis(3-(tertbutyl)-2-hydroxybenzaldehyde (THPM) was synthesized according to sonogashira coupling reaction ¹.

1.2 Synthesis of Ligand THPM. In short, tetrakis (4-ethynylphenyl) Methane (416 mg, 1 mmol), Benzaldehyde, 3-(1, 1-dimethylethyl)-2-hydroxy-5-iodo (1.368 g, 4.5 mmol), Pd(PPh₃)₂Cl₂ (0.8 mmol, 144 mg) and CuI (0.2 mmol. 78 mg) in 15 mL Et₃N were added to 25 mL Schlenk flask and degassed under vacuum. The resulting mixture was stirred at 50 °C under N₂ atmosphere for 24 h. Upon cooling to room temperature, the mixture was poured into saturated aqueous NH₄Cl and extracted with CH₂Cl₂. The obtained organic phase was dried over anhydrous Na₂SO₄ and then concentrated to remove the solvent.

1.3 Synthesis of Zn-COF. THPM (0.04 mmol, 45.0 mg), 1,2-Diaminocyclohexane (0.08 mmol, 10 μ L) and Zn(OAc)₂·2H₂O (1 mmol, 21.9 mg) were put into a 20 mL glass vial and 1, 4-dioxane (3.2 mL), EtOH (0.8 mL) and 0.3 mL of aqueous acetic acid (3 M) were added to the mixture. The glass vial was placed in an oven at 80 °C for 3 days. Upon cooling, a brown powder was isolated by filtration and washed with THF and acetone, respectively. The powder was dried at 80 °C under vacuum overnight.

1.4 Catalytic activity test.

For glycolaldehyde conversion under mechanical condition, glycolaldehyde dimer (60 mg) and Zn-COF (100 mg) were put into 15 mL stainless steel grinding bowls with twenty stainless steel balls. The reaction mixtures were immediately ground using ball mill (Shanghai Jingxin Industrial Development Co., Ltd) at frequency of 30 Hz for 7200 s.

For glycolaldehyde conversion under heterogeneous condition in THF solution, glycolaldehyde dimer (60 mg) and Zn-COF (100 mg) were added to the 25 mL flask, and then add 10 mL THF to the flask. The solution was stirred at room temperature for a few days.

2. Method

Gas chromatography-mass spectrometry (GC-MS) analysis of reaction products followed a published method ². In general: About 2 to 5 mg of the sample was dissolved in 200 μ L pyridine, mixed with 200 μ L of a 40 mg/mL *O*-ethylhydroxylamine hydrochloride solution with 50 mM phenyl- β -D-glucopyranoside as internal standard and heated for 60 min at 70 °C on an oven. Then, it was cooled down to room temperature, and 120 μ L BSTFA was added into the resulting solution, which was heated again for 60 min at 70 °C. The derived sugars were separated by GC-MS (GCMS-QP2010 SE). Injections were performed using a split injector in split mode at 250 °C. Flame ionization detection was co-recorded with MS data and operated under carbon-correction at 250 °C. A Rtx-5MS column (30 m length, ID 0.250 mm, 0.250 μ m film thickness) with 80 kPa helium was used with the following temperature program: (1) Beginning and retaining at 50 °C for 2 min and (2) increasing temperature by 10 K/min to 140 °C and then (3) elevating by 5 K/min to

240 °C and keeping the temperature for 2 min.

FID peak areas of respective carbohydrates (C2-C7) were corrected by their effective carbon number to account for different response factors. This number has been calculated for each derivatized sugar and the internal standard from literature values for individual functional groups (Table S4).

3. Figures

Figure S1 The thermogravimetric analysis (TGA) isotherms of Zn-COF (Under Ar condition)

Figure S2 The XRD profiles of Zn-COF and Co-COF materials

Figure S3 The elemental mapping results of Co-COF materials

Figure S4 GC chromatograms for the products. (a) Mechanical reaction condition: 100 mg catalyst, 60 mg glycolaldehyde dimer, Oscillatory ball mill, 30Hz. (b) Heterogeneous liquid reaction condition: 100 mg catalyst, 60 mg glycolaldehyde dimer, Solvent tetrahydrofuran (THF), $30 \,^{\circ}$ C.

Figure S5 The TEM images of used (a) Zn-COF and (b) Co-COF materials

Figure S6 The XRD profiles of fresh Zn-COF and used Zn-COF materials

4. Tables

Table S1 Fractional atomic coordinates for the unit cell of Zn-COF

Zn-COF							
Space grou	ıp: <i>P</i> 2						
a=20.3239	Å, b=47.664	9 Å, c=15.13	319 Å				
α=90.0000	°, β=90.0000	°, γ= 90.0000) ^o				
Atom	x (Å)	y (Å)	z (Å)	Atom	x (Å)	y (Å)	z (Å)
C1	0.3562	0.39362	0.27996	C185	0.08412	0.15534	0.72046
C2	0.30273	0.38428	0.32116	H186	-0.00828	0.16362	0.77356
C3	0.39778	0.37475	0.2273	C187	0.16521	0.11656	0.62658
C4	0.28383	0.35438	0.3178	C188	0.23631	0.15379	0.55454
Н5	0.27439	0.39876	0.36134	C189	0.07128	0.12481	0.72408
C6	0.38436	0.34713	0.21668	C190	0.11003	0.1067	0.68163
H7	0.44041	0.38442	0.19795	H191	0.19064	0.10048	0.58992
C8	0.32436	0.33532	0.26215	C192	0.20965	0.17782	0.49569
С9	0.23274	0.34654	0.36756	C193	0.29667	0.164	0.60707
C10	0.42989	0.32807	0.1605	C194	0.26031	0.13042	0.4909
011	0.31091	0.3105	0.25186	H195	0.02928	0.11701	0.76062
N12	0.21129	0.31821	0.37738	H196	0.31662	0.21079	0.76171
H13	0.20669	0.36258	0.40415	H197	0.38999	0.22619	0.80476
C14	0.45832	0.3044	0.21865	H198	0.39308	0.20588	0.70476
C15	0.39069	0.31564	0.08234	H199	0.2732	0.23017	0.60297
C16	0.48987	0.34351	0.12036	H200	0.35364	0.22737	0.55866
Zn17	0.24244	0.2882	0.29947	H201	0.31289	0.26081	0.55922
C18	0.14905	0.31193	0.42249	H202	0.45039	0.24577	0.62859
019	0.26866	0.25894	0.22264	H203	0.44818	0.26417	0.73084
N20	0.17286	0.2656	0.35273	H204	0.41677	0.28055	0.63097

C21	0.13435	0.27968	0.42126	H205	0.16385	0.17108	0.46145
H22	0.10882	0.32233	0.38461	H206	0.24629	0.18391	0.44479
C23	0.24967	0.23467	0.21562	H207	0.19866	0.19705	0.53382
C24	0.16435	0.23647	0.33521	H208	0.33633	0.17112	0.5619
H25	0.08123	0.27666	0.40552	H209	0.3164	0.14686	0.64933
C26	0.27844	0.21663	0.14348	H210	0.28381	0.18177	0.65027
C27	0.19851	0.22233	0.27444	H211	0.28571	0.11332	0.52748
H28	0.12672	0.22545	0.37214	H212	0.29639	0.13887	0.44264
C29	0.25796	0.1897	0.13753	H213	0.21841	0.12154	0.45265
C30	0.32717	0.22902	0.07484	C214	0.31408	0.33923	0.85201
C31	0.18048	0.19263	0.26053	C215	0.09396	0.07724	0.67967
C32	0.20755	0.17767	0.1959	C216	0.08092	0.0527	0.67113
H33	0.27593	0.17578	0.08686	C217	0.33815	0.36117	0.8755
C34	0.29251	0.25259	0.02216	C218	0.36979	0.38676	0.90357
C35	0.38881	0.24044	0.12253	C219	0.36824	0.39482	0.99236
C36	0.3523	0.2074	0.00606	C220	0.40799	0.402	0.84377
H37	0.14162	0.18327	0.29982	C221	0.40682	0.41724	1.02186
H38	0.42012	0.2922	0.25335	H222	0.33937	0.38306	1.03963
H39	0.49155	0.31324	0.2701	C223	0.44701	0.42429	0.87316
H40	0.48691	0.28959	0.1771	H224	0.41054	0.39567	0.7751
H41	0.34912	0.30266	0.10479	C225	0.44719	0.43243	0.96298
H42	0.4225	0.30212	0.04058	H226	0.40727	0.42207	1.09172
H43	0.37055	0.33268	0.04035	H227	0.47974	0.43399	0.82606
H44	0.52086	0.32885	0.08144	C228	0.06498	0.02393	0.6516
H45	0.52157	0.35218	0.1736	C229	-0.00013	0.0148	0.65723
H46	0.47413	0.36067	0.07538	C230	0.11207	0.00673	0.61186
H47	0.25002	0.24393	-0.0154	C231	-0.01892	-0.01058	0.61859
H48	0.32689	0.26242	-0.02575	H232	-0.03739	0.02809	0.68645
H49	0.27322	0.26938	0.06539	C233	0.09324	-0.01838	0.57127
H50	0.42513	0.24873	0.07436	H234	0.16249	0.01384	0.60564
H51	0.41286	0.22354	0.16156	C235	0.02668	-0.02707	0.57091
H52	0.37684	0.25772	0.16791	H236	-0.07066	-0.01596	0.61856
Н53	0.37786	0.18963	0.03913	H237	0.13002	-0.02933	0.53312
H54	0.38831	0.21728	-0.0394	C238	-0.39133	-0.39297	0.81891
H55	0.31127	0.19921	-0.03532	C239	-0.4306	-0.37478	0.77729
C56	0.3774	0.42202	0.2946	C240	-0.33538	-0.38322	0.87322
C57	0.18079	0.15069	0.17364	C241	-0.41726	-0.34427	0.78056
C58	0.15644	0.12896	0.14983	H242	-0.47328	-0.38248	0.74157
C59	0.39586	0.44531	0.31267	C243	-0.31834	-0.35586	0.88019
C60	0.4187	0.47223	0.34219	H244	-0.30959	-0.39935	0.90945
C61	0.37595	0.48999	0.3877	C245	-0.35492	-0.33507	0.82367
C62	0.48559	0.47864	0.33806	C246	-0.46373	-0.32688	0.74988
C63	0.40041	0.51328	0.43312	C247	-0.26392	-0.34609	0.94569

H64	0.32425	0.48476	0.39324	O248	-0.33248	-0.3114	0.81505
C65	0.51009	0.50219	0.38178	N249	-0.45451	-0.29726	0.74288
H66	0.51946	0.46469	0.30477	H250	-0.51022	-0.33575	0.72865
C67	0.46839	0.51963	0.43235	C251	-0.28997	-0.32179	1.00371
H68	0.36633	0.5248	0.474	C252	-0.20338	-0.33625	0.89341
H69	0.5627	0.50575	0.38127	C253	-0.24056	-0.36941	1.01013
C70	0.12498	0.10421	0.11615	Zn254	-0.36714	-0.28021	0.75312
C71	0.08578	0.08774	0.17117	C255	-0.50611	-0.27817	0.71071
C72	0.12784	0.09846	0.02576	O256	-0.28359	-0.2629	0.76184
C73	0.04789	0.06606	0.1355	N257	-0.40681	-0.24799	0.69358
H74	0.08211	0.09247	0.24101	C258	-0.47866	-0.24749	0.70546
C75	0.09039	0.07673	-0.01002	H259	-0.54708	-0.27863	0.75878
H76	0.15702	0.1115	-0.01776	C260	-0.26349	-0.24026	0.73497
C77	0.04974	0.05996	0.04407	C261	-0.36978	-0.22394	0.66678
H78	1.01458	0.05524	0.17922	H262	-0.48871	-0.23749	0.77036
H79	0.09118	0.0736	0.9191	C263	-0.19328	-0.23215	0.75495
C80	0.7092	0.67765	0.30842	C264	-0.30567	-0.22033	0.68423
C81	0.68213	0.69233	0.24294	H265	-0.39543	-0.2073	0.63226
C82	0.75966	0.68991	0.36667	C266	-0.17139	-0.20704	0.72492
C83	0.69989	0.722	0.22827	C267	-0.14754	-0.25227	0.80794
H84	0.6434	0.68277	0.2035	C268	-0.27538	-0.19377	0.65433
C85	0.78037	0.71678	0.35954	C269	-0.21319	-0.18744	0.6742
H86	0.77767	0.67619	0.41801	H270	-0.12157	-0.20009	0.73654
C87	0.75105	0.73462	0.28699	C271	-0.13775	-0.27964	0.75499
C88	0.66547	0.73587	0.16688	C272	-0.1775	-0.25867	0.89954
C89	0.82995	0.72932	0.42726	C273	-0.07794	-0.24026	0.82599
O90	0.76964	0.75893	0.27947	H274	-0.30449	-0.17885	0.6166
N91	0.67346	0.76498	0.14872	H275	-0.29974	-0.30256	0.96498
H92	0.628	0.72465	0.12992	H276	-0.33632	-0.32811	1.037
C93	0.79571	0.75282	0.48042	H277	-0.25346	-0.31591	1.05536
C94	0.89077	0.74091	0.37858	H278	-0.21594	-0.3185	0.84981
C95	0.85648	0.70777	0.49551	H279	-0.16348	-0.32923	0.93873
Zn96	0.74293	0.78788	0.20144	H280	-0.18415	-0.35356	0.85162
C97	0.63522	0.77865	0.07881	H281	-0.20457	-0.361	1.05892
O98	0.81126	0.81047	0.24852	H282	-0.28279	-0.37813	1.04771
N99	0.71133	0.81754	0.12219	H283	-0.21521	-0.38663	0.9743
C100	0.64895	0.81095	0.07728	H284	-0.11116	-0.27513	0.69268
H101	0.58201	0.77534	0.09301	H285	-0.10808	-0.29499	0.79348
C102	0.82435	0.83528	0.23754	H286	-0.18476	-0.28982	0.73671
C103	0.73247	0.84595	0.13113	H287	-0.1444	-0.27246	0.93886
H104	0.60869	0.82117	0.11524	H288	-0.18446	-0.23886	0.93707
C105	0.88429	0.84734	0.28297	H289	-0.22533	-0.26957	0.89529
C106	0.78347	0.85408	0.18109	H290	-0.08043	-0.22021	0.86339

H107	0.70622	0.8618	0.09373	H291	-0.04794	-0.25517	0.86574
C108	0.89728	0.87496	0.27182	H292	-0.05137	-0.23697	0.76313
C109	0.93025	0.8285	0.33968	C293	-0.40751	-0.4224	0.82097
C110	0.80192	0.88402	0.17711	C294	-0.18603	-0.16089	0.64637
C111	0.85529	0.89359	0.21851	C295	-0.16213	-0.13889	0.62333
H112	0.93985	0.8848	0.30114	C296	-0.42042	-0.44694	0.82964
C113	0.9588	0.80478	0.28211	C297	-0.43598	-0.47573	0.84926
C114	0.89149	0.81614	0.41799	C298	-0.50092	-0.48506	0.84275
C115	0.99016	0.84416	0.37962	C299	-0.38867	-0.49278	0.88964
H116	0.77334	0.89832	0.13637	C300	-0.51932	-0.5105	0.88104
H117	0.77545	0.76949	0.43736	H301	-0.53835	-0.47187	0.81311
H118	0.75395	0.74405	0.51883	C302	-0.40713	-0.51798	0.92979
H119	0.83066	0.76278	0.5276	H303	-0.33842	-0.48549	0.89663
H120	0.878	0.75827	0.33385	C304	-0.47353	-0.52688	0.92925
H121	0.92777	0.74917	0.42618	H305	-0.57098	-0.51603	0.88046
H122	0.91437	0.72411	0.33878	H306	-0.37028	-0.52884	0.96843
H123	0.89369	0.71767	0.53944	C307	-0.13062	-0.11326	0.5956
H124	0.8164	0.69969	0.53839	C308	-0.13204	-0.10527	0.50674
H125	0.8811	0.6899	0.46188	C309	-0.09244	-0.09799	0.65572
H126	0.99168	0.81359	0.23053	C310	-0.09319	-0.08295	0.47747
H127	0.98782	0.79018	0.32409	H311	-0.16098	-0.11701	0.45924
H128	0.92067	0.79238	0.24762	C312	-0.0532	-0.07579	0.62657
H129	0.92352	0.80265	0.45982	H313	-0.09002	-0.10427	0.72447
H130	0.87166	0.83322	0.45989	C314	-0.0528	-0.06775	0.53667
H131	0.84971	0.80318	0.3958	H315	-0.09261	-0.07819	0.40758
H132	0.97438	0.86139	0.42418	H316	-0.02048	-0.06607	0.67395
H133	1.02148	0.82966	0.41891	C317	1.01211	0.27011	0.13388
H134	1.02153	0.85277	0.32623	C318	1.0835	0.26141	0.1198
C135	0.68259	0.65071	0.33111	C319	1.08784	0.23117	0.0856
C136	0.87606	0.92201	0.20348	C320	1.03298	0.21176	0.12081
C137	0.8944	0.9453	0.1853	H321	0.98516	0.26792	0.07051
C138	0.65815	0.629	0.35469	H322	1.0108	0.29258	0.15343
C139	0.62632	0.60427	0.38752	H323	1.05368	0.19028	0.12502
C140	0.5878	0.58777	0.33135	H324	0.99162	0.21094	0.07334
C141	0.62803	0.59857	0.47801	H325	1.13658	0.22251	0.10383
C142	0.54947	0.56609	0.36588	H326	1.08617	0.23142	0.01232
H143	0.58499	0.59247	0.26139	H327	1.11073	0.26342	0.18319
C144	0.59015	0.57685	0.51267	H328	1.10704	0.27579	0.07148
H145	0.65665	0.61164	0.52237	C329	0.85089	0.32438	0.48267
C146	0.5502	0.56004	0.45738	C330	0.90444	0.31114	0.42524
H147	0.51674	0.55525	0.32116	C331	0.89643	0.27914	0.41664
H148	0.59008	0.57375	0.58357	C332	0.85231	0.26623	0.48787
C149	0.9174	0.97218	0.15594	H333	0.80215	0.32099	0.45067

C150	0.87501	0.98989	0.10923	H334	0.85985	0.34735	0.48544
C151	0.98423	0.9786	0.16166	H335	0.95322	0.31595	0.4548
C152	0.89983	1.01317	0.0643	H336	0.90332	0.32084	0.35843
H153	0.82337	0.98464	0.10246	H337	0.94583	0.26916	0.41988
C154	1.00907	1.00214	0.11846	H338	0.87482	0.2741	0.3514
H155	1.01785	0.96467	0.19582	H339	0.86147	0.24328	0.48919
C156	0.96778	1.01955	0.0668	H340	0.7999	0.26941	0.46978
H157	0.86612	1.02466	1.0225	C341	0.53358	0.71213	0.37955
H158	0.06166	1.00571	0.12029	C342	0.58834	0.73152	0.41563
C159	0.28674	0.31276	0.82359	C343	0.58433	0.76171	0.38096
C160	0.22495	0.30622	0.84443	C344	0.51301	0.77054	0.3662
C161	0.32803	0.29342	0.7716	H345	0.49214	0.71126	0.42651
C162	0.19462	0.27964	0.81448	H346	0.55426	0.69066	0.37544
H163	0.19623	0.32096	0.88311	H347	0.63717	0.7228	0.39847
C164	0.30614	0.26828	0.74164	H348	0.58616	0.73186	0.48888
H165	0.37758	0.30053	0.75933	H349	0.51193	0.793	0.34628
C166	0.23639	0.25991	0.76276	H350	0.48613	0.7685	0.42941
C167	0.13083	0.27582	0.8329	H351	0.61155	0.76355	0.31776
C168	0.35171	0.24823	0.68856	H352	0.60809	0.7761	0.42927
O169	0.21635	0.23722	0.73615	C353	0.34976	0.76513	1.01131
N170	0.09379	0.25175	0.80598	C354	0.39374	0.77746	1.0841
H171	0.10542	0.29231	0.86821	C355	0.40455	0.8093	1.07548
C172	0.36313	0.22119	0.74272	C356	0.35198	0.82331	1.01771
C173	0.32072	0.24123	0.5977	H357	0.29729	0.76873	1.02787
C174	0.4206	0.2606	0.6687	H358	0.35784	0.74212	1.00967
Zn175	0.13331	0.21962	0.74628	H359	0.44234	0.76675	1.0828
C176	0.02187	0.25211	0.79437	H360	0.37066	0.77283	1.1485
O177	0.16778	0.18846	0.68433	H361	0.45364	0.8133	1.04609
N178	0.04641	0.20231	0.75784	H362	0.40442	0.81903	1.14226
C179	-0.00536	0.22138	0.7892	H363	0.36259	0.84616	1.01521
H180	0.01128	0.26211	0.72951	H364	0.30304	0.82053	1.04933
C181	0.14576	0.16469	0.67641	C365	0	0.03985	0
C182	0.03774	0.17263	0.75159	C366	0.5	0.53992	0.5
H183	-0.04624	0.22082	0.74064	C367	0	-0.0476	0.5
C184	0.18213	0.14394	0.6198	C368	-0.5	0.45259	0

Table S2 ICP values of Zn-COF and Co-COF

Catalyst	ICP Zn	ICP Co
Zn-COF	12.0%	0
Co-COF	0.6%	7.9%

Table S3 The catalytic stability of Zn-COF under mechanical conditions

Circle	Catalyst	Time	Conversion	Selectivity	Yield	Rg
			(%)	(%)	(%)	$(10^{-4} \text{mol}\cdot\text{h}^{-1}\cdot\text{g}^{-1})$
1	Zn-COF	2 h	62.7	91.3	57.2	31.35
2	Zn-COF	2 h	48.8	82.1	40.1	24.40
3	Zn-COF	2 h	37.0	87.5	32.4	18.5
4	Zn-COF	2 h	34.6	86.7	30.0	17.3
5	Zn-COF	2 h	33.2	88.4	29.3	16.6

100 mg catalyst, 60 mg glycolaldehyde dimer, Oscillatory ball mill, 30Hz.

Note: Reaction \cdot rate \cdot per \cdot gram \cdot catalyst (Rg) = moles of converted substrate / (time * grams of catalyst).

Effective carbon number (ECN)

To account for different response factors, the effective carbon numbers of monosaccharides and the internal standard were calculated from literature values ³.

Table S4 Calculated ECN values of monosaccharides

Compound	ECN
Glycolaldehyde	5.29
Trioses	8.98
Tetroses	12.67
Pentoses	16.36
Hexoses	20.05
phenyl-β-D-glucopyranoside	20.76

5. Reference:

1. W. Zhou, L. Yang, X. Wang, W. Zhao, J. Yang, D. Zhai, L. Sun, W. Deng, *JACS Au*, 2021, 1, 1497-1505.

2. S. Lamour, S. Pallmann, M. Haas, O. Trapp, Life, 2019, 9 (2), 52.

3. Scanlon, J. T.; Willis, D. E., Calculation of Flame Ionization Detector Relative Response Factors Using the Effective Carbon Number Concept. *Journal of Chromatographic Science* 1985, **23** (8), 333-340.